Flight Delay Prediction Using Machine Learning

Project Code :TCMAPY1293

Objective

This project aims to build an accurate flight delay prediction model using machine learning algorithms, enhancing prediction accuracy to help airlines optimize operations, improve passenger satisfaction, and minimize delay impacts on travellers.

Abstract

Predicting flight delays is crucial for improving airline efficiency and customer satisfaction. Flight delays, caused by factors like bad weather, mechanical issues, and late arrivals, can negatively impact customer experience. This project aims to develop a predictive model for on-time flight arrivals using flight and weather data. We employ machine learning algorithms such as Decision Tree Regression, Bayesian Ridge, Random Forest Regression, and Gradient Boosting Regression to predict flight delays.

Additionally, we incorporate Support Vector Machine (SVM) and enhance its accuracy using hyper tuning techniques. By optimizing these models, we aim to achieve higher accuracy in predicting flight delays. This model can assist airlines in making better decisions, ultimately leading to improved operational efficiency and customer satisfaction.

Keywords: Flight delays, machine learning, predictive model, Decision Tree, Random Forest, Support Vector Machine, hyperparameter tuning.

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

H/W Configuration:

·         Processor                                  - I3/Intel Processor

·         RAM                                                     - 4GB (min)

·         Hard Disk                                             - 128 GB

·         Key Board                                            - Standard Windows Keyboard

·         Mouse                                                  - Two or Three Button Mouse

·         Monitor                                               - Any

S/W Configuration:


•      Operating System                   : Windows 7+            

•      Server side Script                    : Python 3.6+

•      IDE                                             : PyCharm IDE

•      Libraries Used                         : Pandas,  Numpy,  Sci-Kit Learn, Matplotlib,  Seaborn, Flask.

•      Dataset                                     : 2015 FAA Flight Dataset.

Demo Video