The main objective is to detect the quickest change in spectrum sensing.
Quickest change detection (QCD) is a fundamental problem in many applications. Given a sequence of measurements that exhibits two different distributions around a certain flipping point, the goal is to detect the change in distribution around the flipping point as quickly as possible. The QCD problem appears in many practical applications, e.g., quality control, power system line outage detection, spectrum reuse, and resource allocation and scheduling. In this letter, we focus on spectrum sensing as our application since it is a critical process for the proper functionality of cognitive radio networks. Relying on the cumulative sum (CUSUM), we derive the probability of detection and the probability of false alarm of CUSUM-based spectrum sensing. We show the correctness of our derivations using numerical simulations.
Keywords - CUSUM detection, cognitive radio, quickest detection, spectrum sensing.
NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.
Software Requirements:
MATLAB R2018a or above
Hardware Requirements:
Operating Systems:
• Windows 10
• Windows 7 Service Pack 1
• Windows Server 2019
• Windows Server 2016
Processors:
Minimum: Any Intel or AMD x86-64 processor
Recommended: Any Intel or AMD x86-64 processor with four logical cores and AVX2 instruction set support
Disk:
Minimum: 2.9 GB of HDD space for MATLAB only, 5-8 GB for a typical installation
Recommended: An SSD is recommended A full installation of all MathWorks products may take up to 29 GB of disk space
RAM:
Minimum: 4 GB
Recommended: 8 GB