Effect of Fault Ride through Capability on Electric Vehicle Charging Station under Critical Voltage Conditions

Also Available Domains Electrical Vehicles

Project Code :TEPGPS626

Objective

The main objective of this project is to examine the impacts of voltage disturbance on EV batteries and charging systems, and provides a fault ride-through capability (FRTC) to enhance the voltage quality.

Abstract

In this project, a high-quality power supply is required for the proper functioning of the electric vehicle (EV) charging system. However, the voltage quality is one of the significant issues in the distribution grid. This article aims to examine the impacts of voltage disturbance on EV batteries and charging systems, and provides a fault ride-through capability (FRTC) to enhance the voltage quality. The charging system is constructed by the three-phase controlled rectifier and the dc–dc converter. The EV battery pack is modeled with lithium-ion batteries. The FRTC system is designed to improve the voltage quality, and it is achieved through the dynamic voltage restorer. It protects the EV batteries and charging system from the critical voltage sag levels. The performance of the proposed EV charging station (EVCS) has been investigated in 30%, 60%, and 90% voltage sag. The simulation results can be evaluated by using Matlab/Simulink Software.


Keywords:Distribution grid, electric vehicle (EV) charger, fault ride-through capability (FRTC), power quality, and voltage sag.

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

Software Configuration:

Operating System :  Windows 7/8/10

Application Software :  Matlab/Simulink

Hardware Configuration:

RAM :  8 GB

Processor :  I3 / I5(Mostly prefer)

Learning Outcomes

  • Introduction to Matlab/Simulink
  • What is EISPACK & LINPACK
  • How to start with MATLAB
  • About Matlab language
  • About tools & libraries
  • Application of Matlab/Simulink
  • About Matlab desktop
  • Features of Matlab/Simulink
  • Basics on Matlab/Simulink
  • Introduction to controllers.
  • Study of PWM techniques.
  • Project Development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Final year projects