A Three-Level Single Stage A-Source Inverter with the Ability to Generate Active Voltage Vector during Shoot-Through State

Project Code :TEPGPE190


The main objective of this project is to gain the capability for applying an active voltage vector during the shoot-through state.


In this paper, as the boosting stage for a three-level inverter, a new modified configuration of A-source IN with two series outputs is proposed and connected to a 10-switches three-level inverter. Besides generating two outputs by a single IN, the proposed DC/AC inverter is able to apply an active voltage vector during the ST state. This capability improves the DC/AC voltage gain, increases the modulation index, and decreases the required ST time. The operation principles are described, and the steady-state relations are derived. It is compared with other magnetically coupled INs in terms of boost factor and voltage stress of switches. Considering the 10-switches three-level inverter as the front-end inverter, an adopted maximum boost strategy using the space vector modulation is developed targeting minimum ST time. The performance of the proposed topology is validated through the MATLAB-based simulations.

Keywords: Impedance source network, A-Source impedance network, multi-level inverter, maximum boost space vector, PWM. 

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram


Software Configuration:

Operating System :  Windows 7/8/10

Application Software :  Matlab/Simulink

Hardware Configuration:

RAM :  8 GB

Processor :  I3 / I5(Mostly prefer)

Learning Outcomes

  • Introduction to Matlab/Simulink
  • How to start with MATLAB
  • About Matlab language
  • About tools & libraries
  • Application of Matlab/Simulink
  • About Matlab desktop
  • Features of Matlab/Simulink
  • Basics on Matlab/Simulink
  • Introduction to controllers.
  • Study of PWM techniques.
  • Project Development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Final year projects