Performance Improvement of Grid Interfaced Hybrid System Using Distributed Power Flow Controller Optimization Techniques

Project Code :TEPGPS573

Objective

The main objective of the proposed method is to improve the reliability, power quality, and transient stability of a hybrid system by using Distributed Power Flow Controller Optimization Techniques

Abstract

In this study, the proposed hybrid system was incorporated with a combined PV and wind energy system. Maximum power point tracking (MPPT) methods have been proposed to achieve maximum efficiency from the designed system. In addition, this study focused on improving the stability of the hybrid system. To improve the power quality and transient stability of the proposed system, we introduce a novel control strategy called the distributed power flow controller (DPFC) implementation with an optimization technique called the lion optimization algorithm (LOA) technique. This LOA control technique was developed for the first time in the application of a DPFC controller in a grid-connected system. The control technique was developed using signals from the system parameters, that is, voltage and current. To tune these parameters, this study used fuzzy logic and lion optimization techniques. The proposed system with controllers was tested in MATLAB/Simulink and the results were compared.


Keywords: Distributed power flow controller, fuzzy logic controller, grid interconnected, lion optimization algorithm, PV system and wind energy system

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

Software Configuration:

Operating System :  Windows 7/8/10

Application Software :  Matlab/Simulink

Hardware Configuration:

RAM :  8 GB

Processor :  I3 / I5(Mostly prefer)

Learning Outcomes

  • Introduction to Matlab/Simulink
  • What is EISPACK & LINPACK
  • How to start with MATLAB
  • About Matlab language
  • About tools & libraries
  • Application of Matlab/Simulink
  • About Matlab desktop
  • Features of Matlab/Simulink
  • Basics on Matlab/Simulink
  • Introduction to controllers.
  • Study of PWM techniques.
  • Project Development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Related Projects

Final year projects