Also Available Domains Hybrid Systems
Main objective of this project aims to enhance the ability of the PMG-based WECS and its battery storage system to meet their command power delivery, while ensuring the frequency and voltage stability at the PCC.
Permanent magnet generator (PMG)-based wind energy conversion systems (WECSs) with battery units, have become a popular class of distributed generation units. These distributed generation units are typically operated using various types of controllers, including droop controllers. Existing droop controllers are designed to operate grid-side dc-ac power electronic converters (PEC) to ensure stable and reliable power production by a PMG-based WECS.
The employment of battery storage units (to mitigate fluctuations in the power produced by a PMG-based WECS) introduces additional considerations for the design of droop controllers. Such considerations are due to the power available from battery units that is dependent on the state-of-charge (SOC). This paper proposes adjustments in the parameters (droop constants) of the droop control (operate the discharge PEC) based on the SOC of the battery units. These adjustments are made to further support stable and reliable power delivery of the PMG-based WECS into the point of-common-coupling (PCC). The proposed adjustments of droop constants are evaluated using a 7.5 kW grid-connected PMG-based WECS with 3.52 kW generator-charged battery storage units.
Keywords: Permanent magnet generators, wind energy conversion systems, battery storage systems, droop control, distributed generation.
NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.
Software Configuration:
Operating System : Windows 7/8/10
Application Software : Matlab/Simulink
Hardware Configuration:
RAM : 8 GB
Processor : I3 / I5(Mostly prefer)