Modeling of a Droop-Controlled Grid-Connected DFIG Wind Turbine

Project Code :TEPGPS561

Objective

The main objective of this project is to propose a linearized small-signal model for modelling a droop controlled grid connected DFIG wind turbine.

Abstract

Traditionally, to characterize the response of droop-controlled systems RMS models have been used. However, as it is demonstrated in this work, when droop control is applied to doubly-fed induction generators, RMS models do not allow to predict the system stability and dynamic response. Thus, in this article, a linearized small-signal model that overcomes the limitations of RMS models is presented. The proposed model is validated by simulation in MATLAB/Simulink


Keywords: Doubly-fed induction generator (DFIG), droop control, small-signal modeling. 

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

Software Configuration:

Operating System :  Windows 7/8/10

Application Software :  Matlab/Simulink

Hardware Configuration:

RAM :  8 GB

Processor :  I3 / I5(Mostly prefer)

Learning Outcomes

  • Introduction to Matlab/Simulink
  • What is EISPACK & LINPACK
  • How to start with MATLAB
  • About Matlab language
  • About tools & libraries
  • Application of Matlab/Simulink
  • About Matlab desktop
  • Features of Matlab/Simulink
  • Basics on Matlab/Simulink
  • Introduction to controllers.
  • Study of PWM techniques.
  • Project Development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Related Projects

Final year projects