Microorganism Image Recognition Based on Deep Learning Application

Project Code :TMMAAI58

Objective

This research studies the possibility to use image classification and deep learning methods to recognize bacteria and yeast which reduces the analyzing time of microorganism classification and eliminates human error compared to the classic biological techniques

Abstract

Microorganisms have been confirmed to be essential for the fundamental function of various ecosystems. This existing framework is divided into image preprocessing phase which obtained by histogram equalization, feature extraction by Bag-of-words model and classification phase by Support Vector Machine (SVM). The classification is less in accuracy and time consuming for training is more. 

In order to overcome this we can use the deep learning technique. In this proposed process we train the network by using dataset. LeNet classifies the data between train and test image. This classifier gives the better results in accuracy about 75% and time consuming is less when compared to existing techniques.

Keywords- Microorganism Recognition, Image Processing, Machine Learning, Deep Learning, Image Classification.

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

Software & Hardware Requirements:

Software: Matlab 2018a or above

Hardware:

Operating Systems:

  • Windows 10
  • Windows 7 Service Pack 1
  • Windows Server 2019
  • Windows Server 2016

Processors:

Minimum: Any Intel or AMD x86-64 processor

Recommended: Any Intel or AMD x86-64 processor with four logical cores and AVX2 instruction set support

Disk:

Minimum: 2.9 GB of HDD space for MATLAB only, 5-8 GB for a typical installation

Recommended: An SSD is recommended a full installation of all Math Works products may take up to 29 GB of disk space

RAM:

Minimum: 4 GB

Recommended: 8 GB

Learning Outcomes

  • Introduction to Matlab
  • What is EISPACK & LINPACK
  • How to start with MATLAB
  • About Matlab language
  • Matlab coding skills
  • About tools & libraries
  • Application Program Interface in Matlab
  • About Matlab desktop
  • How to use Matlab editor to create M-Files
  • Features of Matlab
  • Basics on Matlab
  • What is an Image/pixel?
  • About image formats
  • Introduction to Image Processing
  • How digital image is formed
  • Importing the image via image acquisition tools
  • Analyzing and manipulation of image.
  • Phases of image processing:
    • Acquisition
    • Image enhancement
    • Image restoration
    • Color image processing
    • Image compression
    • Morphological processing
    • Segmentation etc.,
  • About Artificial Intelligence (AI)
  • About Machine Learning
  • About Deep Learning
  • About layers in AI (input, hidden and output layers)
  • Building AI (ANN/CNN) architecture using Matlab
  • We will able to know, what’s the term “Training” means in Artificial Intelligence
  • About requirements that can influence the AI training process:
    • Data
    • Training data
    • Validation data 
    • Testing data 
    • Hardware requirements to train network
  • How to recognize the image using AI
  • How to extend our work to another real time applications
  • Project development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Related Projects

Final year projects