iWaste: Video-Based Medical Waste Detection and Classification

Project Code :TMPGAI73

Objective

To replace the current time-intensive and dangerous manual waste auditing method, we propose a system named iWASTE to detect and classify medical waste based on videos recorded by a camera-equipped waste container.

Abstract

In this work, we will detect and classify the medical waste from the input video which is nearly 5 seconds in duration. The collected video contains 4 number of medical waste things such as, gloves, hairnet, mask, shoe cover. Waste monitoring is necessary for the efficient reduction of medical waste in operation theatre. 

We suggest a framework known as iWASTE (Intelligent Waste Auditing System for Tracking Emissions) to detect and classify medical waste based on video records by a camera placed on waste container to improve the previous time-consuming and unsafe manual waste assessment process. For detection and classification process, we propose a new architecture based on Deep Learning Techniques. 

The proposed method will obtain a promising result when compared to pre-existing methods.

Keywords: Video Processing, Detection, Classification, iWaste, Deep Learning Techniques

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

Software & Hardware Requirements:

Software: Matlab 2018a or above

Hardware:

Operating Systems:

  • Windows 10
  • Windows 7 Service Pack 1
  • Windows Server 2019
  • Windows Server 2016

Processors:

Minimum: Any Intel or AMD x86-64 processor

Recommended: Any Intel or AMD x86-64 processor with four logical cores and AVX2 instruction set support

Disk:

Minimum: 2.9 GB of HDD space for MATLAB only, 5-8 GB for a typical installation

Recommended: An SSD is recommended A full installation of all MathWorks products may take up to 29 GB of disk space

RAM:

Minimum: 4 GB

Recommended: 8 GB

Learning Outcomes

  • Introduction to Matlab
  • What is EISPACK & LINPACK
  • How to start with MATLAB
  • About Matlab language
  • Matlab coding skills
  • About tools & libraries
  • Application Program Interface in Matlab
  • About Matlab desktop
  • How to use Matlab editor to create M-Files
  • Features of Matlab
  • Basics on Matlab
  • What is an Image/pixel?
  • About image formats
  • Introduction to Image Processing
  • How digital image is formed
  • Importing the image via image acquisition tools
  • Analyzing and manipulation of image.
  • Phases of image processing:
    • Acquisition
    • Image enhancement
    • Image restoration
    • Color image processing
    • Image compression
    • Morphological processing
    • Segmentation etc.,
  • About Artificial Intelligence (AI)
  • About Machine Learning
  • About Deep Learning
  • About layers in AI (input, hidden and output layers)
  • Building AI (ANN/CNN) architecture using Matlab
  • We will able to know, what’s the term “Training” means in Artificial Intelligence
  • About requirements that can influence the AI training process:
    • Data
    • Training data
    • Validation data 
    • Testing data 
    • Hardware requirements to train network
  • How to detect and classify the object using AI
  • How to extend our work to another real time applications
  • Project development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

mail-banner
call-banner
contact-banner
Request Video

Related Projects

Final year projects