Iris Segmentation Using Interactive Deep Learning

Project Code :TCMAPY364

Objective

In this project, we introduce an interactive variant of UNet for iris segmentation using the deep learning technique. Also included the Squeeze Expand modules, to lower training time while improving storage efficiency.

Abstract

Automated iris segmentation is an important component of biometric identification. The role of artificial intelligence, particularly machine learning and deep learning, has been considerable in such automated delineation strategies. Although the use of deep learning is a promising approach in recent times, some of its challenges include its high computational requirement as well as availability of large annotated training data. 

We propose an interactive variant of UNet for iris segmentation, including Squeeze Expand modules, to lower training time while improving storage efficiency through a reduction in the number of parameters involved. The interactive component helps in generating the ground truth for datasets having insufficient annotated samples.

Keywords: Active Learning, Biometrics, Deep Learning, Fine Tuning, Iris Segmentation.

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

HARDWARE SPECIFICATIONS:

  • Processor: I3/Intel
  • Processor RAM: 4GB (min)
  • Hard Disk: 128 GB
  • Key Board: Standard Windows Keyboard
  • Mouse: Two or Three Button Mouse
  • Monitor: Any

SOFTWARE SPECIFICATIONS:

  • Operating System: Windows 7+
  • Server-side Script: Python 3.6+
  • IDE: PyCharm
  • Libraries Used: Pandas,TensorFlow,Matplotlib,Numpy.
  • Frame Works:Flask.

Learning Outcomes

  • Scope of Real Time Application Scenarios.
  • What is a search engine and how browser can work.
  • What type of technology versions.
  • About segmentation.
  • Use of Deep convolutional neural network and work flow of DCNN.
  • Need of Pycharm-IDE to develop a web application.
  • Working of computer vision and role of open cv2.
  • Features of OpenCV.
  • Working Procedure.
  • Testing Techniques.
  • Error Correction mechanisms.
  • How to run and deploy the applications.
  • Introduction to basic technologies.
  • How project works.
  • Input and Output modules.
  • How test the project based on user inputs and observe the output.
  • Project Development Skills:
    • Problem analyzing skills.
    • Problem solving skills.
    • Creativity and imaginary skills.
    • Programming skills.
    • Deployment.
    • Testing skills.
    • Debugging skills.
    • Project presentation skills.
    • Thesis writing skills.

Demo Video

mail-banner
call-banner
contact-banner
Request Video