Electrical design of a photovoltaic-grid system for electric vehicles charging station

Project Code :TEMAED143

Objective

The main objective of this project is to provide continuous power supply to the charging stations without any power interruptions in the system.

Abstract

In this project, a smart method for a photovoltaic grid system for electric vehicles charging station, however, it describes the flow power through a smooth algorithm using Matlab/Simulink environment. The consumption of electric vehicle battery is considered as a daily load for the charging station, indeed, it is highly recommended to predict the periodic power use in the charging station. However, the storage system is ensured through a lithium ion battery, which provides a wider operating temperature and others convenient characteristics. Additionally, the contribution of the electrical grid is also combined in this architecture as a back-up plan for mutual benefits when the photovoltaic power is unable to secure the station needs, on the one hand and on the other hand, when the battery of the charging station is fully charged and the photovoltaic system is able to inject an extra energy in the grid. The simulation results can be evaluated by using MATLAB/SIMULINK 2018a Software.


Keywords:Photovoltaic-Grid System (PVGS), Electric vehicle (EV), Charging Station (CS), dc-dc Converters, Maximum Power Point Tracking (MPPT), Perturb and Observe (P&O).

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram

Specifications

Software Configuration:

Operating System :  Windows 7/8/10

Application Software :  Matlab/Simulink

Hardware Configuration:

RAM :  8 GB

Processor :  I3 / I5(Mostly prefer)

Learning Outcomes

  • Introduction to Matlab/Simulink
  • What is EISPACK & LINPACK
  • How to start with MATLAB
  • About Matlab language
  • About tools & libraries
  • Application of Matlab/Simulink
  • About Matlab desktop
  • Features of Matlab/Simulink
  • Basics on Matlab/Simulink
  • Introduction to controllers.
  • Study of PWM techniques.
  • Project Development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Related Projects

Final year projects