DOA Estimation for Wideband LFM Signals with a Few Snapshots

Project Code :TMMASP31


The main aim of the project is to estimate DOA and producing angular spectrum with lower side lobe levels.


The wideband linear frequency modulation (LFM) signals are widely used in information systems. The conventional direction-of-arrival (DOA) estimation algorithms of LFM signals rely on a large number of snapshots, some of which are not reliable in numerous practical applications such as underwater array processing. To solve the above problem, we present a modified sparse iterative covariance (MSPICE)-based estimation method in fractional Fourier transform (FrFT) domain to estimate the DOA of wideband LFM signals. First, we extend the original SPICE algorithm in FrFT domain with a specific transform order for wideband LFM signals. Then, we utilize the energy centrobaric modification method to make the original SPICE more accurate without adding more computational complexity. The simulation results demonstrate the effectiveness of the proposed method.

Keywords:  Direction of arrival, Fractional Fourier Transform ,iterative approach ,Wideband LFM

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram


Software Requirements:

MATLAB R2018a or above

Hardware Requirements:

Operating Systems:

• Windows 10

• Windows 7 Service Pack 1

• Windows Server 2019

• Windows Server 2016


Minimum: Any Intel or AMD x86-64 processor

Recommended: Any Intel or AMD x86-64 processor with four logical cores and AVX2 instruction set support


Minimum: 2.9 GB of HDD space for MATLAB only, 5-8 GB for a typical installation

Recommended: An SSD is recommended A full installation of all MathWorks products may take up to 29 GB of disk space


Minimum: 4 GB

Recommended: 8 GB

Learning Outcomes

  • Introduction to Matlab
  • How to start with MATLAB
  • About Matlab language
  • Matlab coding skills
  • About tools & libraries
  • Application Program Interface in Matlab
  • About Matlab desktop
  • How to use Matlab editor to create M-Files
  • Features of Matlab
  • Basics on Matlab
  • Basics of wireless communications
  • How system modal can be formed in Matlab.
  • Construction of algorithm according to system modal
  • Analyzing and visualization of plots.
  • Phases of data transmission:
    • Generation of input signal
    • Construction of transmitter
    • Formation of channel
    • Construction of receiver
  • How to extend our work to another real time applications
  • Project development Skills
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Request Video

Related Projects

Final year projects