Comparison of Different Filtering, Smoothing Filters in Digital Image Processing

Project Code :TMMAIP377


In this work, comparison of quality and efficiency of several filtering/smoothing techniques with respective of their smoothing value and neighborhood size will take place.


Filtering is perhaps the most fundamental operation of image processing and computer vision. In the broadest sense of the term “filtering,” the value of the filtered image at a given location is a function of the values of the input image in a small neighborhood of the same location. 

Here, in this work we will compare the quality and efficiency of several filtering/smoothing techniques with respective of their smoothing value and neighborhood size. Some of the filtering techniques are guided, gaussian, median and bilateral. Experiments show that the guided filter performs very well in terms of both quality and efficiency.

Keywords: Filtering/Smoothing, Guided Filter, Gaussian Filter, Median Filter, Bilateral Filter.

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram


Software: Matlab R2018a or above


Operating Systems:

  • Windows 10
  • Windows 7 Service Pack 1
  • Windows Server 2019
  • Windows Server 2016


Minimum: Any Intel or AMD x86-64 processor

Recommended: Any Intel or AMD x86-64 processor with four logical cores and AVX2 instruction set support


Minimum: 2.9 GB of HDD space for MATLAB only, 5-8 GB for a typical installation

Recommended: An SSD is recommended A full installation of all MathWorks products may take up to 29 GB of disk space


Minimum: 4 GB

Recommended: 8 GB

Learning Outcomes

  • Introduction to Matlab
  • How to start with MATLAB
  • About Matlab language
  • Matlab coding skills
  • About tools & libraries
  • Application Program Interface in Matlab
  • About Matlab desktop
  • How to use Matlab editor to create M-Files
  • Features of Matlab
  • Basics on Matlab
  • What is an Image/pixel?
  • About image formats
  • Introduction to Image Processing
  • How digital image is formed
  • Importing the image via image acquisition tools
  • Analyzing and manipulation of image.
  • Phases of image processing:
    • Acquisition
    • Image enhancement
    • Image restoration
    • Color image processing
    • Image compression
    • Morphological processing
    • Segmentation etc.,
  • How to extend our work to another real time applications
  • Project development Skills
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Request Video

Related Projects

Final year projects