Assessment and Mitigation of Dynamic Instabilities in Single-Stage Grid-Connected Photovoltaic Systems With Reduced DC-Link Capacitance

Also Available Domains Solar Power Generation

Project Code :TEMAPE182


The main objective of this project is to mitigate the instabilities with the reduced dc-link capacitance Using a detailed small-signal model of the grid-connected PV system.


Single-stage utility-scale photovoltaic (PV) systems are usually interfaced with the host grid via a centralized voltage-source converter (VSC). Recently, and due to their reliability, the dc-link film capacitors are favoured over electrolytic types in grid-connected applications. However, the capacitance per unit volume of film capacitors is significantly smaller than electrolytic capacitors. 

The overall system stability might be compromised by the reduction of the dc-link capacitance, particularly in PV systems that have a dynamic resistance that varies with operating conditions. Using a detailed small-signal model of the grid-connected PV system, it is shown in this paper that the reduction of the dc-link capacitance interferes with the dynamic resistance of the PV array, which eventually leads to instabilities. The minimum dc-link capacitance that preserves the overall system stability is determined. A simple and effective active compensator is developed to mitigate the instabilities with the reduced dc-link capacitance. Detailed time-domain simulations are presented to validate the analytical results and show the proposed compensator’s effectiveness in preserving the system stability

INDEX TERMS: Active damping, DC-AC power converters, DC-link stabilization, grid-connected inverters, photovoltaic, single-stage, small-signal analysis.

NOTE: Without the concern of our team, please don't submit to the college. This Abstract varies based on student requirements.

Block Diagram


Software Configuration:

Operating System :  Windows 7/8/10

Application Software :  Matlab/Simulink

Hardware Configuration:

RAM :  8 GB

Processor :  I3 / I5(Mostly prefer)

Learning Outcomes

  • Introduction to Matlab/Simulink
  • How to start with MATLAB
  • About Matlab language
  • About tools & libraries
  • Application of Matlab/Simulink
  • About Matlab desktop
  • Features of Matlab/Simulink
  • Basics on Matlab/Simulink
  • Introduction to controllers.
  • Study of PWM techniques.
  • Project Development Skills:
    • Problem analyzing skills
    • Problem solving skills
    • Creativity and imaginary skills
    • Programming skills
    • Deployment
    • Testing skills
    • Debugging skills
    • Project presentation skills
    • Thesis writing skills

Demo Video

Request Video
Final year projects