

S. No	TITLE	DOMAIN
1.	IoT-Enhanced Transport and Monitoring of Medicine Using Sensors, MQTT, and Secure Short Message ServiceThe main objective of this project is to enhance the transport and monitoring of medicine using IoT sensors, MQTT protocol for data transmission, and a secure Short Message Service (SMS) for real-time alerts and updates.	ΙΟΤ
2.	IoT Based Electrical Vehicle Battery Management System with Charge Monitor and Fire ProtectionThe objective of this project is to develop an IoT-based Electrical Vehicle Battery Management System (EVBMS) with integrated charge monitoring and fire protection capabilities. This system aims to enhance battery safety, extend lifespan, and optimize charging efficiency through real-time monitoring and preemptive fire safety measures.	IOT
3.	Advancing Workplace Safety with IoT-Enabled Industrial MonitoringThe objective of this project is to advance workplace safety by deploying IoT- enabled industrial monitoring systems. Through the integration of IoT sensors and data analytics, the system will enable enhanced real-time monitoring of environmental conditions and machinery operations. This initiative aims to mitigate accidents and elevate safety standards across industrial workplaces.	IOT
4.	Sewage Water Monitoring and Filtering using Raspberry Pi The main objective of this project is to develop a sewage water monitoring and filtering system using Raspberry Pi. This system aims to continuously monitor water quality parameters, detect contaminants, and automate filtration processes to improve sewage treatment efficiency and environmental sustainability.	WSN
5.	Smart Water Flow and Pipeline Leakage Detection using IoTThe main objective of this project is to implement a smart water flow monitoring system using IoT to detect and alert pipeline leakages, thereby optimizing water management and reducing wastage.	IOT
6.	Drivers Real time Drowsiness, Attention Detection and Alarm System using Eye Aspect Ratio(EAR) AnalysisThe main objective of this project is to develop a real-time drowsiness and attention detection system for drivers using Eye Aspect Ratio (EAR) analysis, aiming to enhance road safety through timely alerts and interventions.	Machine learning

	An Evaluation of LoRaWAN and WLAN for IoT-based	
7.	Photovoltaic Microgrid Monitoring The main objective of this project is to assess LoRaWAN and WLAN	WSN
	technologies for monitoring IoT-based solar microgrids, focusing on their reliability, coverage, and energy efficiency.	
	IoT and Machine Learning-Based Smart Soil Irrigation Farming Systems	
8.	The main objective of this project is to design and implement IoT and machine learning-driven systems for precision soil irrigation in agriculture. This aims to enhance water efficiency, monitor soil conditions, and maximize crop productivity through automated decision-making.	Machine learning
	Smart Helmet for Riders to Avoid Accidents Using IoT	
9.	The main objective of this project is to develop a smart helmet integrated with IoT technology to enhance rider safety by providing real-time hazard detection and accident prevention alerts, thereby reducing the risk of accidents on the road.	ΙΟΤ
	Design and Implementation of RF Based War Spying Robot with	
	Wireless Night Vision Camera	
10.	The main objective of this project is to design and implement a war spying robot equipped with RF communication and a wireless night vision camera system. This aims to enable remote surveillance in challenging environments, enhancing situational awareness and operational capabilities in military or security	Robotics
	applications.	
	IoT-Enabled Advanced Water Quality Monitoring System for Pond Management and Environmental Conservation	
11.	The main objective of this project is to develop a system for analyzing the water quality of ponds to detect hazardous substances and pollutants, and then upload this data to an IoT platform. This integration aims to enable real-time monitoring and remote management, facilitating prompt responses to water quality issues for environmental conservation and public health protection.	IOT
	IoT-enabled Moving Wheelchair with Obstacle Detection and	
	Continuous Health Monitoring	
12.		Biomedical
	The main objective of this project is to design an IoT-enabled wheelchair equipped with obstacle detection for safe navigation and continuous health monitoring capabilities. Additionally, integrating control via Google Assistant	

	aims to provide enhanced accessibility and autonomy for users with mobility challenges.	
	LPG Transport Tracking and Leakage Detection with Accident Prevention Alert System	
13.	The main objective of this project is to create a system for tracking LPG transport, detecting leaks, and issuing accident prevention alerts through buzzer and message notifications. This ensures immediate response to potential hazards, improving safety in LPG transportation and distribution operations.	Embedded Applications
	Remote Monitoring of Hazardous Environment at Mining Sites	
	Using LoRa Network	
14.	The main objective of this project is to implement a LoRa-based system for remote monitoring of hazardous conditions at mining sites. It includes continuous detection of dangers and sending real-time alert messages, while also uploading data to ThingSpeak for centralized monitoring and analysis.	WSN
	An IoT based Real Time Forest Fire Detection & Alerting System	
	Using LoRa Communication	
15.	The main objective of this project is to implement an IoT-based real-time forest fire detection and alerting system using LoRa communication. This involves transmitting fire data via a LoRa transmitter for reception by a LoRa receiver, enabling immediate actions to be taken to prevent and manage forest fires effectively.	WSN
	LoRa - Powered Smart Agriculture System for Monitoring and	
	Controlling	
16.	The main objective of this project is to deploy a LoRa-powered smart agriculture system for monitoring and controlling farms. This includes detecting soil moisture levels and transmitting data from a transmitter to a receiver, enabling automated actions such as activating pumps for efficient irrigation management.	WSN
	Tracking and Monitoring Cattle's Health using Wireless Sensor	
	Networks	
17.	The main objective of this project is to implement a wireless sensor network for tracking and monitoring the health of cattle. Sensor data will continuously monitor health indicators, enabling prompt action in case of anomalies, and notifying authorities via GSM messages for immediate intervention and care.	Biomedical
	Smart Aquaponics and Hydroponics Monitoring Using IoT	
18.	The main objective of this project is to develop an IoT-based system for smart monitoring of aquaponics and hydroponics. This includes automating water transfer between pond and land based on need, activating pumps as required, and uploading real-time data to ThingSpeak for comprehensive monitoring and management of water resources in agricultural settings.	IOT

19.	Intelligent Control Shed Poultry Farm System Incorporating With Machine Learning The main objective of this project is to create an intelligent control system for poultry farms integrating machine learning. Gas sensors will monitor poultry conditions, and machine learning algorithms will analyze sensor data in real- time. If abnormal conditions are detected, the system will trigger alerts via a buzzer or GSM message, ensuring prompt action to maintain poultry health and welfare.	Machine learning
	Automatic Licence Plate Detection and Recognition System using Image Processing Techniques	
20.	The main objective of this project is to develop an automatic license plate detection and recognition system using image processing techniques. This system will use cameras to detect license plates, verify their correctness, and grant entry based on valid plate recognition, enhancing security and efficiency in access control scenarios.	OpenCV
	Air Quality Prediction and Analysis using Machine Learning	
21.	The main objective of this project is to predict and analyze air quality using machine learning. Sensors such as MQ6, MQ2, and PMS will detect air quality parameters, and machine learning algorithms will process the data. If the processed data indicates poor air quality, the system will issue alerts, enabling timely responses to potential environmental hazards and ensuring public health safety.	Machine learning
	Implementation of a Wireless Human Hand Gesture Controlled	
22.	Robotic Arm The main objective of this project is to implement a wireless human hand gesture-controlled robotic arm using flex sensors. Movements detected by the flex sensors on the human hand will be replicated by the robotic arm, enabling intuitive and precise control for various applications such as prosthetics or industrial manipulation tasks.	Robotics
	Car Black Box System for Accident Analysis using IoT	
23.	The main objective of this project is to create a car black box system using IoT for accident analysis. In case of an accident, the system will send a message through GSM and upload relevant data to ThingSpeak. This aims to provide immediate alerting and comprehensive data collection for accident reconstruction and analysis.	ΙΟΤ
	Virtual Eye: Object Recognition for Blind	
24.	The main objective of this project is to develop "Virtual Eye," an object recognition system for the blind using a webcam. The system will utilize the webcam to detect objects, and a speaker will verbally announce the names of detected objects in real-time, enhancing accessibility and independence for visually impaired individuals.	OpenCV
	Development of a Sign Language Translator Based on Gestures-To-	
25.	Words Using IoT The main objective of this project is to develop a sign language translator using IoT based on gestures-to-words. Each finger will have flex sensors to interpret	ΙΟΤ

	gestures, allowing translation between English and regional languages such as Telugu and Tamil. The translated words will be spoken aloud by a speaker, facilitating communication for individuals using sign language and promoting inclusivity.	
	A Hybrid IoT and Machine Learning Approach for Crop	
	Recommendation Using a Voting Ensemble Model	
26.	The main objective is to utilize IoT sensors to measure essential crop parameters, process this data through machine learning algorithms like a Voting Ensemble Model, and provide real-time recommendations on whether the conditions are suitable ("good") or unsuitable ("bad") for optimal crop growth, ensuring timely alerts for necessary actions.	Machine Learning
	IoT-Based Smart Kitchen with Enhanced and Automated Safety	
	Measures	
27.	The main objective is to implement an IoT-based smart kitchen with automated safety measures, including monitoring cylinder weight and detecting fires, with data uploaded to ThingSpeak for real-time analysis and actionable alerts, ensuring enhanced safety and efficiency in kitchen operations.	ΙΟΤ
	SDIoTPark : A Data Analytics Framework for Smart Parking Using	
	SDN-Based IoT	
28.	The main objective is to develop SDIoTPark, a data analytics framework for smart parking using SDN-based IoT, where vehicles can efficiently find parking spaces by checking real-time availability on ThingSpeak. This system aims to optimize parking management, reduce congestion, and enhance user convenience through IoT integration and data-driven decision-making.	ΙΟΤ
	A Smart Bin with Real-Time Monitoring and Garbage Level	
	Tracking Using IoT	
29.	The main objective is to create a smart bin system that utilizes IoT for real-time monitoring and garbage level tracking. By measuring dust percentage using ultrasonic and IR sensors, detecting debris, and using a servo mechanism to sort waste into wet or dry bins, the system aims to optimize waste management efficiency. Data from the smart bin will be uploaded to ThingSpeak for continuous monitoring and analysis, facilitating timely waste collection and resource allocation.	ΙΟΤ
	Over-Crowd Avoiding In Transportation With Face Detection Using	
	Raspberry pi	
30.	The main objective is to implement a system for overcrowd avoidance in transportation using Raspberry Pi and face detection technology. When the camera detects overcrowding through face detection, it triggers a GSM module to send real-time alerts to authorities, ensuring prompt action to manage crowd levels effectively and enhance passenger safety.	OpenCV
	An AI-Based Ventilation KPI Using Embedded IoT Devices	
31.	The objective of this project is to develop an AI-based ventilation KPI system using embedded IoT devices, which integrates temperature, humidity, and air	IOT

	quality sensors to continuously monitor and analyze indoor air conditions. The system leverages machine learning algorithms to optimize ventilation performance and provide actionable insights for improving indoor air quality.	
	Anomaly Detection in Industrial Air Conditioners in Hangars With	
	Aircraft Spare Parts	
32.	The objective of this project is to implement an anomaly detection system for industrial air conditioners in aircraft hangars by using temperature, humidity, and vibration sensors to monitor system performance. The system applies machine learning algorithms to analyze sensor data and identify deviations, ensuring timely maintenance and preventing potential failures.	Embedded Applications
	Emphasize The Health Benefits Of Improved Air Quality With Mini	
	Ozone Generator In Trains	
33.	The objective of this project is to enhance air quality in trains using a mini ozone generator, combined with air quality sensors to monitor and control ozone levels and particulate matter. This system aims to improve passenger health by reducing airborne contaminants asnd maintaining a cleaner, healthier environment within train compartments.	Embedded Applications
	Digital Twin for Smart Building Management System	
34.	The objective of this project is to create a digital twin for smart building management using DHT11 sensors for temperature and humidity, IR sensors for human detection, and current and voltage sensors for monitoring energy consumption from a 12V battery. This system aims to optimize building operations and enhance energy efficiency by providing real-time insights and control.	Machine learning
	FertiForecast: Identification of Fertilizer Based on NPK Levels	
35.	using Machine Learning Algorithms The objective of the FertiForecast project is to optimize fertilizer application using machine learning algorithms to analyze NPK sensor data and soil moisture levels. The system processes this data to recommend the precise type and amount of fertilizer required and automatically activates the water pump as needed, ensuring optimal soil conditions. This approach enhances crop growth and resource efficiency by customizing fertilization and irrigation practices based on real-time soil data and predictive analytics.	Machine Learning
36.	Machine Learning based Assessment of Mental Stress using	Machine Learning

	Breaches in Electronic Vot Machines	openCV
41.	Exploring Vulnerabilities: Analyzing Malfunctions and security	operCV
40.	and Agriculture Operations The objective of the IoT-Enabled Horticultural Lighting project is to enhance plant growth and agricultural efficiency by using sensors to monitor soil moisture, fire risks, and light conditions. The system automates irrigation, detects fire hazards, and adjusts lighting based on sensor inputs, with all data uploaded to ThingSpeak and critical alerts sent via GSM. This integration ensures responsive and optimal management of horticultural operations.	IOT
	IoT-Enabled Horticultural Lighting for Optimizing Plant Growth	
39.	Photovoltaic Modules The objective of the project is to develop an embedded system for real- time fault diagnosis of photovoltaic modules using temperature sensors, voltage sensors, and current sensors. The system processes sensor data to identify and diagnose faults in photovoltaic modules, ensuring efficient operation and timely maintenance.	Embedded Applications
	A Novel Embedded System for Real-Time Fault Diagnosis of Photovoltain Modules	
38.	for Elderly The main objective of the project is to create a lightweight wearable fall detection system for the elderly using gait analysis. By utilizing sensors such as the ADXL345 accelerometer, the system aims to detect falls accurately and promptly send a message with the GPS location to a designated phone number, ensuring timely assistance and improving the safety of elderly individuals.	Arduino
	identified, the system sends alerts via a GSM module. A Lightweight Wearable Fall Detection System using Gait Analysis	
37.	The objective of the VanyaRakshak project is to develop an intelligent intrusion detection system for rainforests using PIR sensors for motion detection and a USB webcam for real-time monitoring. The Raspberry Pi processes the data, and if motion is detected or unauthorized activity is	openCV
	in Rainforest	
	reduce stress. VanyaRakshak: Intelligent System Approach to Intrusion Detection	
	The main objective of the project is to assess mental stress levels using wearable sensors, such as heart rate monitors and galvanic skin response (GSR) sensors. By applying machine learning algorithms to the data collected from these wearable sensors, the project aims to accurately evaluate mental stress and provide actionable insights to help manage and	

		<u>.</u>
	The main objective of the project is to identify and analyze vulnerabilities, malfunctions, and security breaches in electronic voting machines. This will be achieved using a Raspberry Pi for real-time monitoring with cameras and sensors like temperature, vibration, and tamper detection. If unauthorized access is detected, a message will be sent through a GSM module to alert security personnel.	
	Lifi based real time under water board casting from optimal data	
	rates and lower Power consumption	
42.	The objective of the LiFi-based underwater broadcasting project is to enable real-time data transmission in aquatic environments with optimal data rates and low power consumption. By using different LEDs to indicate various types of data being sent and activating a buzzer at the receiver side to signal data reception, the system ensures clear and efficient underwater communication.	WSN
	Research on Self-Powered Rainfall Sensor Suitable for Landslide	
	Monitoring Based on Triboelectric Nanogenerator	
	The main objective of the research is to design and implement a self-powered	
43.	rainfall sensor for landslide monitoring, using a triboelectric nanogenerator	Arduino
	(TENG) to power the sensor and measure rainfall intensity. This sensor will	
	continuously provide critical data on precipitation levels to improve early	
	warning systems for landslide risk assessment.	
	Networked MEMS pressure sensor design to detect pore water	
	pressure for landslide monitoring	
44.	The objective of the project is to design a networked MEMS pressure sensor system to monitor pore water pressure and soil moisture for landslide detection. This system uses MEMS pressure sensors to measure pore water pressure and soil moisture levels. The collected data is transmitted wirelessly to a central unit for real-time analysis. If the system detects conditions indicative of a landslide, it sends an alert via a GSM module and activates a buzzer to provide immediate warning and facilitate timely mitigation efforts.	Embedded Applications
	Battery Health Management Based on Digital Twin Technology	
45.	The objective of the project is to develop a battery health management system using digital twin technology, incorporating sensors such as temperature sensors, voltage sensors, and current sensors to monitor battery performance. The digital twin model processes this data to simulate and analyze battery health in real time, enabling predictive maintenance and optimization of battery lifespan.	Machine learning
46.	AI and Digital Twins Transforming Healthcare IoT	IOT

47.	The objective of the project is to use AI and digital twin technology to transform healthcare IoT by integrating Dallas temperature sensors, heartbeat sensors, and BMP180 sensors to monitor vital signs and environmental conditions. The system analyzes this data in real-time, sends alerts via a GSM module if any abnormalities are detected, and transmits the values to an IoT platform for comprehensive health monitoring and management. AQUATWIN: A Digital Twin Framework for Early Detection of Water Contamination The objective of the AQUATWIN project is to create a digital twin framework for early detection of water contamination by integrating pH sensors, turbidity sensors, and TDS sensors to monitor water quality. The	Machine Learning
	system processes sensor data using machine learning algorithms to predict contamination, and sends alerts via a GSM module if any problematic values are detected.	
	AI-Driven Driver Behaviour Assessment Through Vehicle and	
	Health Monitoring	
	The main objective of the project is to enhance driver safety by assessing	
48.	behavior and health through real-time monitoring, utilizing heartbeat and	OpenCV
	temperature sensors, a drowsiness-detecting camera, and emergency push	-
	button integration, with alerts sent via GSM and buzzer activation for	
	abnormalities.	
	Optimizing Structural Health Monitoring Systems Through	
	Integrated Fog and Cloud Computing Within IoT Framework	
	The main objective of this project is to optimize structural health	
49.	monitoring systems by integrating fog and cloud computing within an IoT	
т).	framework, using heartbeat and Dallas temperature sensors alongside	IOT
	RFID cards to upload individual health details to the ThingSpeak IoT	
	webserver. The system will trigger alerts via GSM messaging if any health	
	metrics exceed predefined thresholds.	
50	Outdoor VOCs' Concentration Monitoring Due to Traffic Emission The main objective of the project is to monitor outdoor VOCs' concentrations	
50.	due to traffic emissions by continuously measuring air quality, gas, and smoke	WSN
	levels with specialized sensors. Data is sent to ThingSpeak for ongoing	

	monitoring, and alerts are issued via GSM if thresholds are exceeded, with	
	information transmitted from a Zigbee transmitter to a receiver for traffic police.	
	Flood Management System Using Cloud Computing and Internet-of Things	
	The Flood Management System utilizing IoT and cloud computing aims	
51.	to enhance early flood detection and monitoring by integrating IoT	ΙΟΤ
	sensors to collect environmental data and performing predictive analytics.	
	It provides timely alerts to authorities and the public, improving	
	preparedness and response to minimize flood risks.	
	IoT-Based Smart Biofloc Monitoring System for Fish Farming Using Machine Learning	
	The IoT-Based Smart Biofloc Monitoring System aims to optimize fish	
52.	farming by monitoring key water parameters like pH, dissolved oxygen,	Machine Learning
	and temperature. Using IoT sensors and machine learning, it provides	
	real-time analysis, predicts water quality trends, and alerts farmers to	
	potential risks, enhancing productivity and reducing manual labor.	
	Sensor-Driven Student Counting for Efficient Classroom Energy Management	
	The Sensor-Driven Student Counting system optimizes classroom energy	
53.	usage by using IoT sensors to monitor real-time student occupancy. It	ЮТ
	adjusts lighting, heating, and cooling based on actual occupancy, reducing	
	energy waste, lowering costs, and promoting sustainability while	
	maintaining student comfort.	
	Awake Guard: An Arduino-Based Real-Time System for Enhancing Driver Safety Through Drowsiness Detection	
	The Awake Guard system, an Arduino-based solution, enhances driver	
54.	safety by detecting drowsiness through sensors that monitor eyelid	Embedded Applications
	movement and head position. It provides real-time alerts to prevent	**
	accidents, aiming to improve road safety, reduce fatigue-related risks, and	
	offer a cost-effective, user-friendly solution for widespread adoption.	
55.	Design of Solar Powered Grid for Application in Electric Vehicle Charging Station	Embedded Applications

Tireless Power Transfer Electric Vehicle Charger Using Solar nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a alar-powered, contactless charging system for electric vehicles, shancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management ne IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors and analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care. mart Jacket for Health Monitoring of Climbers Using LoRaWAN echnology ne Smart Jacket for Health Monitoring of Climbers is a wearable system at tracks vital health metrics in real time during climbs using LoRaWAN chnology for long-range communication. It enhances climber safety by oviding early warnings of health issues and enabling monitoring by edical teams or emergency responders in remote areas	WSN
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a har-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors ad analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care. mart Jacket for Health Monitoring of Climbers Using LoRaWAN echnology he Smart Jacket for Health Monitoring of Climbers is a wearable system at tracks vital health metrics in real time during climbs using LoRaWAN chnology for long-range communication. It enhances climber safety by	WSN
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a har-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, d scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors ad analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care. mart Jacket for Health Monitoring of Climbers Using LoRaWAN echnology the Smart Jacket for Health Monitoring of Climbers is a wearable system at tracks vital health metrics in real time during climbs using LoRaWAN	WSN
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a har-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, d scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors and analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care. mart Jacket for Health Monitoring of Climbers Using LoRaWAN echnology he Smart Jacket for Health Monitoring of Climbers is a wearable system	WSN
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a har-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors ad analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care. mart Jacket for Health Monitoring of Climbers Using LoRaWAN echnology	
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a har-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors ad analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care. nart Jacket for Health Monitoring of Climbers Using LoRaWAN	
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a har-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, d scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors and analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make formed decisions and promoting preventative care.	
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a lar-powered, contactless charging system for electric vehicles, ahancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management the IoT and Machine Learning-driven Holistic Health Monitoring system rovides real-time monitoring of vital health metrics through IoT sensors ad analyzes data using ML algorithms. It delivers personalized insights r proactive health and fitness management, empowering users to make	
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a lar-powered, contactless charging system for electric vehicles, hancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management he IoT and Machine Learning-driven Holistic Health Monitoring system ovides real-time monitoring of vital health metrics through IoT sensors ad analyzes data using ML algorithms. It delivers personalized insights	
hergy he Wireless Power Transfer Electric Vehicle Charger aims to develop a blar-powered, contactless charging system for electric vehicles, shancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management the IoT and Machine Learning-driven Holistic Health Monitoring system	
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a blar-powered, contactless charging system for electric vehicles, bhancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment mpowering Proactive Wellbeing Management	_
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a blar-powered, contactless charging system for electric vehicles, bhancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure. T ML Driven Holistic Health Monitoring and Fitness Assessment	Machine Learning
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a blar-powered, contactless charging system for electric vehicles, bhancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability, ad scalability for green transportation infrastructure.	
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a blar-powered, contactless charging system for electric vehicles, blancing sustainability and convenience. It focuses on integrating ireless power transfer with solar energy, assessing efficiency, reliability,	
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a plar-powered, contactless charging system for electric vehicles, phancing sustainability and convenience. It focuses on integrating	
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a plar-powered, contactless charging system for electric vehicles,	
nergy ne Wireless Power Transfer Electric Vehicle Charger aims to develop a	
nergy	WSN
6 6	
frastructure.	
d environmental benefits of renewable energy in transportation	
ergy production, storage, and distribution while assessing the economic	
anagement for efficient vehicle charging. It focuses on optimizing	
eate a sustainable solution by integrating solar energy with grid	
1	anagement for efficient vehicle charging. It focuses on optimizing ergy production, storage, and distribution while assessing the economic d environmental benefits of renewable energy in transportation frastructure.

	The Intelligent Health Monitoring and Early Warning System uses smart	
	sensors and wireless communication to provide real-time health tracking	
	for elderly individuals in rural areas. It detects early signs of health	
	deterioration and issues timely alerts to family and healthcare providers,	
	enhancing overall well-being and healthcare access for rural empty nesters.	
	Digital Health and Machine Learning Technologies for Blood Glucose Monitoring and Management of Gestational Diabetes	
	The Digital Health and Machine Learning Technologies for Blood	
60	Glucose Monitoring create a real-time system for tracking blood glucose	Machine Learning
60.	levels in pregnant women with gestational diabetes. Utilizing machine	Machine Learning
	learning for data analysis, it provides tailored recommendations and	
	timely interventions to enhance health outcomes for both mother and	
	baby.	
	Ecoaquatics: Feed Efficient Fish Health Monitoring System	
	The Ecoaquatics Feed Efficient Fish Health Monitoring System optimizes	
	fish feeding by real-time monitoring of fish health and water quality. It	
61.		Embedded Applications
	aims to reduce feed waste, enhance fish growth, and promote	
	sustainability in aquaculture through efficient resource use and improved	
	farm productivity.	
	Healthcare Monitoring Revolution through Face Detection Using BP and SpO2	
	The Healthcare Monitoring Revolution through Face Detection develops	
	a non-invasive system that uses facial recognition technology to monitor	
62.	vital health metrics like blood pressure (BP) and oxygen saturation	OpenCV
	(SpO2). It offers real-time assessments without physical contact,	
	enhancing patient monitoring and enabling early detection of health issues	
	for improved care.	
63.	Advancing Healthcare Monitoring: Integrating Machine Learning With Innovative Wearable and Wireless Systems for Comprehensive Patient Care	Machine Learning
	The project aims to enhance healthcare monitoring by integrating machine learning with advanced wearables to continuously track vital health data. It provides personalized insights and predictive outcomes, improving	5

68.	smart Wearable Device with Multi-Sensor Integration for Search and Rescue Operations	Embedded+IOT	
	and convenience while preventing unauthorized access.		
	effectiveness and user experience, ensuring a balance between security		
67.	recognition and mobile verification. It aims to assess the system's	AN DIN	
	improve smart home device security through methods like biometric	WSN	
	Protocol The project focuses on creating a multi-factor authentication system to		
	Smart Home Security: An Efficient Multi-Factor Authentication		
	making through insights into equipment performance and health.		
	management system to enhance operational efficiency and decision-		
	monitoring systems. It focuses on implementing a real-time equipment	101	
66.	protocol for efficient data exchange between industrial equipment and	IOT	
	The project aims to create a communication framework using the MQTT		
	MQTT Protocol and Implementation of Equipment Management System for Industrial Internet of Things		
	systems, ultimately improving battery efficiency and longevity.		
	accuracy and provide insights for optimizing battery management		
	analyzing factors influencing degradation. It seeks to enhance prediction		
65.	predicting the lifespan and performance of lithium-ion batteries by	Machine Learning	
	The study aims to identify effective machine learning algorithms for		
	Estimation of Li-Ion Cell		
	Analysis of Optimal Machine Learning Approach for Battery Life		
	services and remote monitoring, enhancing community resilience and safety in critical situations where traditional networks fail.		
	long-range, low-power capabilities, it seeks to support emergency		
04.	with limited or no network connectivity. By leveraging LoRa technology's	WSN	
64.	to create a reliable communication system for data transmission in areas		
	The Communication in Black Spot Using LoRa Technology project aims		
	Communication in black spot using lora technology		
	remote monitoring and proactive health management for better patient care.		

	This project develops a smart wearable device with multi-sensor integration for real-time monitoring, GPS tracking, data sharing, safety alerts, and extended power efficiency to enhance search and rescue coordination in critical environments.	
69.	Real-Time Parking System with Navigation This project aims to create a real-time parking system that detects available spaces and provides navigation, reducing search times and enhancing user convenience through live updates and guidance.	ЮТ
70.	Unveiling the Future: Design and Development of an Intelligent Raspberry PI based Smart Mirror Design using Internet of Things Assistance This project designs an intelligent smart mirror powered by Raspberry Pi that integrates IoT features for real-time updates and voice recognition, enhancing daily routines and creating a seamless smart home experience.	ЮТ
71.	Color based Product Sorting Machine using Raspberry PiThis project develops a color-based product sorting machine using Raspberry Piand color detection technology to automate sorting, enhancing efficiency andaccuracy in manufacturing and logistics.	Embedded
72.	Mo-SSeS: A Motorcycle Smart Security System Using Raspberry Pi Based on the Internet of Things This project develops Mo-SSeS, a smart motorcycle security system using Raspberry Pi and IoT technology for real-time tracking, remote monitoring, and alerts to enhance security and deter theft.	ЮТ
73.	Real-Time Object Recognition with Voice Feedback for VisuallyImpaired Based on Raspberry PiThis project creates a Raspberry Pi-based object recognition system thathelps visually impaired individuals by providing voice feedback, usingmachine learning and cameras to enhance accessibility and improve qualityof life.	Embedded
74.	Safeguarding Journeys: Raspberry pi's Intelligent Driver Monitoring This project develops an intelligent driver monitoring system using Raspberry Pi to enhance road safety by tracking driver behavior and detecting fatigue or distraction, offering real-time alerts to promote safer driving.	Embedded
75.	Vision Voice: A Raspberry Pi-Based Text-to-Audio Converter for the Visually Impaired The "Vision Voice" project develops a Raspberry Pi-based text-to-audio converter that assists visually impaired individuals by converting written text into audible speech, using optical character recognition (OCR) and speech synthesis to improve access to information.	
76.	Facial Recognition Authentication in Electoral Processes using Raspberry PiThis project implements facial recognition authentication for electoral processes using Raspberry Pi to enhance voting security and integrity by verifying voter identities and reducing fraud.	Machine learning
77.	LoRa-Enabled NodeMCU Nodes for Efficient Agricultural Monitoring in	WSN

	This project creates LoRa-enabled NodeMCU nodes for agricultural monitoring, integrated with a Raspberry Pi web application for real-time data analysis, to improve decision-making and support sustainable farming practices.	
78.	Design and Implementation of a Disinfecting Mobile Robot Based on a Raspberry PiThis project develops a Raspberry Pi-powered disinfecting mobile robot that uses sensors and automated spraying to enhance sanitation and reduce pathogen spread.	Robotics
79.	Enhancing Night time Highway Drive Safety with a Raspberry Pi- Enabled Collision Alert System This project aims to enhance nighttime highway safety with a Raspberry Pi- enabled collision alert system that detects hazards and alerts drivers in real time to reduce accident risks.	Embedded
80.	Reimagining Health Tracking: Raspberry Pi Innovations for Holistic WellnessThis project develops Raspberry Pi-based health tracking solutions to promote holistic wellness by integrating various health metrics, enabling users to gain insights and make better lifestyle choices	Embedded
81.	Gas Detection and Environmental Monitoring Using Raspberry Pi PicoThis project develops a gas detection and environmental monitoring systemusing Raspberry Pi Pico to detect harmful gases and monitor air quality inreal time, enhancing safety in various environments.	Embedded
82.	 Hands-Free PC Control Using Eye Movements and Blink Sensor with Raspberry Pi This project develops a hands-free PC control system using eye movements and a blink sensor with Raspberry Pi, enabling users to interact with their computers through eye gestures for improved accessibility. 	Machine learning
83.	Microcontroller Home-Based Security Reporting System using GPS- enabled TechnologyThe objective of this project is to design a home-based security reporting system that utilizes a microcontroller and GPS-enabled technology to track and report security events in real-time. The system aims to enhance home security by providing location-based alerts and notifications.	embedded
84.	Long Short Term Memory (LSTM)-based Cuffless Continuous Blood Pressure MonitoringThe objective of this study is to develop a non-invasive, continuous blood pressure monitoring device using IMU sensors and an LSTM-based machine learning model for accurate BP estimation. The system aims to	Machine Learning

	1	
	enhance personalization through individualized model training and achieve reliable real-time BP measurements.	
	Design of a Multi-Sensors Wearable System for Continuous Home Monitoring of People With Parkinson's	
85.	The objective of this study is to design a wearable multi-sensor system for continuous home monitoring of individuals with Parkinson's disease. The system aims to track and analyze physiological and movement data to support early detection and personalized disease management.	ЮТ
	Continuous Patient-Independent Estimation of Respiratory Rate and Blood Pressure Using Robust Spectro-Temporal Features Derived From Photoplethysmogram Only	
86.	This study presents a method for continuous, patient-independent estimation of respiratory rate and blood pressure using spectro-temporal features derived from photoplethysmogram (PPG) signals, aiming to improve non-invasive monitoring accuracy and reliability.	ЮТ
	Personalized Blood Pressure Control by Machine Learning for Remote Patient Monitoring	
87.	This study focuses on developing a machine learning-based system for personalized blood pressure control, enabling effective remote patient monitoring and tailored management to improve patient outcomes.	Machine Learning
	IoT-Enabled Smart E-Healthcare System with Predictive Prescription Algorithm for Automatic Patient Monitoring and Treatment	
88.	This study develops an IoT-enabled smart e-healthcare system with a predictive prescription algorithm for automatic patient monitoring and treatment, aiming to improve healthcare efficiency and provide personalized care.	ΙΟΤ
	Pulse2AI: An Adaptive Framework to Standardize and Process Pulsatile Wearable Sensor Data for Clinical Applications	
89.	This study introduces Pulse2AI, an adaptive framework for standardizing and processing pulsatile wearable sensor data, aiming to improve the accuracy and applicability of wearable data in clinical applications.	Machine Learning

	TOMATO PLANT DISEASES DETECTION SYSTEM USING IMAGE PROCESSING	
90.	This study develops a tomato plant disease detection system using image processing techniques to accurately identify and classify diseases, helping with early intervention and improved crop yield.	Deep Learning
	FL-ToLeD: An Improved Lightweight Attention Convolutional Neural Network Model for Tomato Leaf Diseases Classification for Low-End Devices	
91.	This study introduces FL-ToLeD, a lightweight attention convolutional neural network model designed for efficient classification of tomato leaf diseases, optimized for use on low-end devices.	Machine Learning
	Human-Centered AI in Smart Farming: Toward Agriculture 5.0	
92.	This study explores the role of human-centered AI in smart farming, aiming to drive the transition to Agriculture 5.0 by enhancing efficiency, sustainability, and decision-making in agricultural practices.	Machine Learning
	Hybrid Digital Twin Model for Greenhouse and Underground Environments	
93.	This study develops a hybrid digital twin model to monitor and manage greenhouse and underground environments, aiming to optimize conditions and enhance decision-making through real-time data integration and simulation.	ЮТ
	Forecasting and Performance Analysis of Energy Production in Solar Power Plants Using Long Short-Term Memory (LSTM) and Random Forest Models	
94.	This study uses Long Short-Term Memory (LSTM) and Random Forest models to forecast and analyze the performance of energy production in solar power plants, aiming to enhance prediction accuracy and optimize energy management.	Machine Learning
95.	A LoRa-enabled Personal Dust Sampler for Opencast Mine Workers	WSN

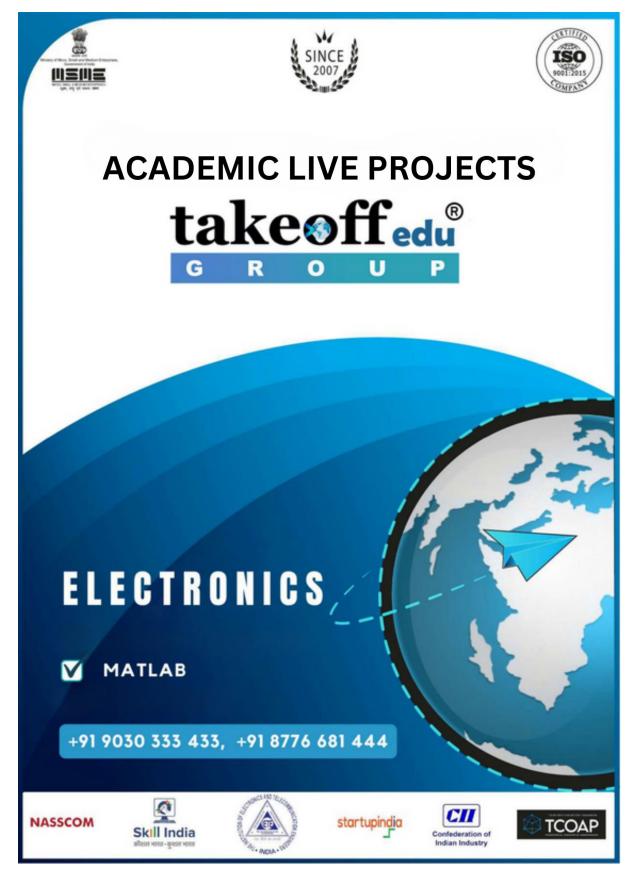
ta	ke		ff	du®
G	R	0	U	P

	This study develops a LoRa-enabled personal dust sampler for opencast mine workers, aiming to provide real-time, remote monitoring of air quality and dust exposure to enhance worker safety.	
96.	IoT Based Real-time Environment Monitoring and Safety for Factory Workplace This study introduces an IoT-based system for real-time environmental monitoring in factory workplaces, focusing on improving safety by tracking conditions and detecting hazards.	ЮТ
97.	Crop Classification and Yield Prediction Using Robust Machine Learning Models for Agricultural Sustainability This study develops robust machine learning models for crop classification and yield prediction, aiming to enhance agricultural sustainability by improving crop management and resource utilization.	Machine Learning
98.	AI-Based IoT System for Temperature Forecasting This study develops an AI-based IoT system for accurate temperature forecasting, aiming to improve predictive capabilities through real-time data integration and AI algorithms.	Machine Learning
99.	Neural Network-Based Active Cooling System With IoT Monitoring and Control for LCPV Silicon Solar Cells This study develops a neural network-based active cooling system for LCPV silicon solar cells, integrating IoT monitoring and control to optimize temperature management and improve solar cell efficiency.	ЮТ
100.	Monitoring the Power Consumption of Home Appliances Using an IoT- Based SCADA SystemThis study develops an IoT-based SCADA system to monitor the power consumption of home appliances, aiming to optimize energy usage and improve household energy efficiency.	ЮТ

101.	Advancing Healthcare Monitoring: Integrating Machine Learning With Innovative Wearable and Wireless Systems for Comprehensive Patient Care To develop an advanced healthcare monitoring system integrating machine learning with wearable and wireless technologies for real-time patient data analysis. The system aims to enhance patient care through predictive analytics and continuous health monitoring.	Machine Learning
102.	IoT-Based Allergy Detection and Alert System To create an IoT-based allergy detection system that identifies potential allergens in the environment using advanced sensors. The system provides real-time alerts to users via mobile notifications, enabling timely preventive actions	ΙΟΤ
103.	 SpectroGLY: A Low-Cost IoT-Based Ecosystem for the Detection of Glyphosate Residues in Waters. To develop SpectroGLY, an affordable IoT-based system for detecting glyphosate residues in water using spectral analysis and advanced sensors. The system aims to enable real-time monitoring and promote safe water quality management 	Machine Learning
104.	Smart Inventory system for Expiry Date tracking System To design a smart inventory system for tracking the expiry dates of products using IoT and automation. The system aims to provide real-time notifications and alerts, ensuring efficient inventory management and reducing waste	ЮТ
105.	AI-Powered Agricultural Safety and Soil Moisture Monitoring System using Raspberry Pi To develop an AI-powered system for agricultural safety and soil moisture monitoring using Raspberry Pi and advanced sensors. The system aims to optimize irrigation and enhance farm safety through real-time data analysis and predictive alerts.	Machine Learning
106.	Automatic Glucose Bottle Empty Alert & Baby Fall Down Prevention From Bed Alert System For Nurse On Medical Treatment To create an automated alert system for monitoring glucose bottle levels and detecting baby fall incidents using sensors. The system notifies nurses in real time, ensuring prompt response and enhanced patient safety during medical treatment	Biomedical

107.	IoT Implementation for Environmental, Safety, and Production Monitoring in Underground MinesTo develop an IoT-based system for real-time monitoring of environmental conditions, safety parameters, and production metrics in underground mines. The system aims to enhance worker safety, optimize resource use, and improve operational efficiency	ЮТ
108.	Deep Learning Based Animal Detection With SMS And IOT Notification To develop a deep learning-based system for detecting animals in agricultural fields and sending real-time SMS and IoT alerts. The system aims to protect crops from damage and ensure efficient field management.	Deep Learning
109.	Iot Vehicle Parameter Monitoring System The objective of the IoT-based vehicle parameter monitoring system is to continuously track critical vehicle metrics such as CO emission, fuel level, and engine temperature in real-time. This system aims to enhance vehicle performance, ensure efficiency, and provide early detection of potential issues for timely maintenance	ЮТ
110.	Weapon Detection Using Deep Learning For Security Applications using RaspberrypiThe objective of the weapon detection system using deep learning on Raspberry Pi is to accurately identify potential weapons in real-time for enhanced security. This system aims to provide automated surveillance and alert authorities for immediate intervention in high-risk areas.	Deep Learning
111.	Traffic Sign Recognition Systems With Hardware Implementation The objective of the Traffic Sign Recognition System with Hardware Implementation is to detect and classify traffic signs using raspberrypi, enhancing driver assistance and road safety. The system processes real- time images from a camera, identifies traffic signs, and provides alerts through visual or audio outputs	Deep Learning

	Wildfire Risk Assessment and Detection for Remote Terrain	
112.	The objective of the Wildfire Risk Assessment and Detection for Remote Terrain is to monitor environmental conditions using IoT and AI to predict and detect wildfire risks in real time. The system analyzes temperature, humidity, wind patterns, and smoke levels to provide early warnings and improve disaster response	Machine Learning
113.	Fingerprint and Face Detection with Self Banking Biometric and GSM TechnologyThe objective of the Fingerprint and Face Detection with Self-Banking Biometric and GSM Technology is to enhance security and accessibility in banking transactions using biometric authentication. The system verifies users through fingerprint and face recognition, enabling secure self-banking services while providing transaction alerts via GSM	Embedded Applications
114.	Automated Greenhouse for Optimal Crop Selection and Growth The objective of the is to monitor and control environmental conditions using IoT and AI for maximizing crop yield. The system adjusts temperature, humidity, and irrigation based on real-time data, ensuring ideal growth conditions for selected crops	Machine Learning
115.	Alcohol Sensing with Engine Locking System and Communication Using GPS GSM TechnologyThe objective of the concept is to enhance road safety by preventing drunk driving. The system detects alcohol levels in the driver's breath, automatically locks the vehicle engine if intoxication is detected, and sends alerts with the vehicle's location via GPS and GSM to emergency contacts or authorities.	WSN
116.	Securing Vehicles with Arduino: Implementing Geo-Fencing Technology for Theft PreventionThe Objective is to enhance vehicle security by creating virtual boundaries around the vehicle. The system uses GPS and Arduino to track the vehicle's location, sending alerts via GSM if the vehicle moves beyond the predefined geo-fenced area, thus preventing theft and unauthorized movement.	WSN
117.	Anti Theft Power Smart Metering SystemThe objective of the Anti-Theft Power Smart Metering System is to detect and prevent electricity theft by monitoring power consumption in	WSN


	real-time. The system uses smart meters integrated with sensors and communication technologies to detect irregularities, alert authorities, and automatically disable power supply in case of theft attempts	
118.	IoT Based Epilepsy Monitoring Device for Children The objective of the IoT-Based Epilepsy Monitoring Device for Children is to provide real-time monitoring of children with epilepsy by detecting seizure activities using sensors. The device sends alerts via IoT technology to caregivers or medical personnel, ensuring timely intervention and enhancing the safety of children prone to seizures	ΙΟΤ
119.	Design and Implementation of Arduino Controlled Mecanum Wheel Robot The objective of the Design and Implementation of Arduino Controlled Mecanum Wheel Robot is to develop a robot with omnidirectional movement capabilities using mecanum wheels, controlled by an Arduino system. The robot will be capable of moving in any direction with precise control, making it suitable for tasks like material handling, surveillance, and navigation in confined spaces	Robotics
120.	Implementation of Farmguard with Automated Animal Detection and Monitoring System using IoT The objective of this projects is to enhance farm security and animal management by detecting and monitoring animals in real-time. The system uses IoT sensors and cameras to track animal movements, detect intrusions, and send alerts, ensuring better control and protection of farm .	ΙΟΤ

PROJECT SUPPORTS FOR STUDENTS:

- PROJECT ABSTRACT
- ✤ PROJECT IEEE BASE PAPER/ REFERENCE PAPER
- ✤ PROJECT PRESENTATION IN PPT FORMAT
- ✤ PROJECT REVIEW ASSISTANCE FOR VIVA
- ✤ PROJECT DIAGRAMS
- ✤ PROJECT SOURCE CODE
- ✤ PROJECT REPORT
- ✤ PROJECT SCREEN SHOTS
- PROJECT DEMO
- ✤ PROJECT EXPLANATION
- ✤ PLAGARISM DOCUMENTATION
- ✤ INTERNATIONAL JOURNAL/CONFERENCE PUBLISHING
- ✤ PROJECT ACCEPTANCE LETTER
- ✤ PROJECT COMPLETION CERTIFICATE

LATEST MATLAB ACADEMIC LIVE PROJECTS 2024-2025

S. No	Project Code	Title	Domain
1	TMMAAI321	Tomato Quality Classification Based on Transfer Learning Feature Extraction and Machine Learning Algorithm Classifiers Objective: The study introduces a CNN-SVM hybrid model for tomato quality grading, achieving 97.50% accuracy in binary and 97.54% in multiclass classifications.	Image Processing/Artificial Intelligence
2	TMMAIP438	Single Underwater Image Restoration Using Variational Framework Guided by Imaging Model with Noise Objective: The objective is to enhance underwater image quality by integrating an improved imaging model with noise and variational frameworks for superior contrast, color correction, and noise suppression.	Image Processing
3	TMMASP197	Lightweight and High Accurate RR Interval Compensation for Signals from Wearable ECG Sensors <i>Objective:</i> The objective is to develop a lightweight, high- accuracy RRI compensation method for wearable ECG sensors, balancing power consumption and resolution.	Signal Processing
4	TMMASP194	A Novel ECG Signal Quality Index Method Based on Skewness-MODWT Analysis. Objective: Develop a novel Signal Quality Index (SQI) method to classify and optimize ECG signals for wearable devices, enhancing accuracy and efficiency.	Signal Processing
5	TMMASP201	A Morphology-Preserving Algorithm for Denoising of EMG-Contaminated ECG Signals Objective: Develop a novel iterative regeneration method to efficiently suppress EMG noise in ECG signals, preserving diagnostic information.	Signal Processing
6	TMMAIP440	Online Low-Light Sand-Dust Video Enhancement Using Adaptive Dynamic Brightness Correction and a Rolling Guidance Filter Objective: To enhance low-light sand-dust videos, an adaptive dynamic brightness correction and rolling guidance filter improve contrast, illumination, and noise reduction.	Image Processing, Image Enhancement
7	TMMAIP441	Online Low-Light Sand-Dust Video EnhancementUsing Adaptive Dynamic Brightness Correction and aRolling Guidance FilterObjective: To enhance low-light sand-dust videos, an adaptivedynamic brightness correction and rolling guidance filterimprove contrast, illumination, and noise reduction.	Image Processing, Image Denoising
7	TMMAAI332	Lumbar Disease Classification Using an Involutional Neural Based VGG Nets (INVGG) Objective: The objective is to classify lumbar diseases accurately using an advanced INVGG network that combines involutional layers with a modified VGG structure, enhancing diagnostic precision in medical imaging.	Image Processing/Artificial Intelligence
8	TMMAWS94	Wireless Sensor Network (WSN) Model Targeting Energy Efficient Wireless Sensor Networks Node Coverage Objective: Designing and improving energy-efficient coverage methods for wireless sensor networks using the improved gray wolf algorithm to optimize node deployment.	Communication

9	TMMACO138	Millimeter-Wave Massive MU-MIMO Performance Analysis for Private Underground Mine	Communication
		Communications	
		10Objective : This article evaluates mmWave massive MU-MIMO channel characteristics in an underground mine, emphasizing path loss, time dispersion, and spectral efficiency.	
10	TMMAAI341	A Novel Transfer Learning Approach for Detection of	Image
		Pomegranates Growth Stages	Processing/Artificial
		Objective : The objective is to develop an efficient approach for early detection of pomegranate growth stages using transfer learning and machine learning techniques, achieving 98% accuracy.	Intelligence
11	TMMAAI343	A Novel Framework for Vehicle Detection and Tracking	Image
		in Night Ware Surveillance Systems Objective: To enhance nighttime vehicle detection and tracking, our model employs MIRNet for image enhancement and YOLO with SIFT for accurate tracking.	Processing/Artificial Intelligence
12	TMMAAI344	Convolutional Neural Network Image Classification	Image
		Based on Different Color Spaces	Processing/Artificial
		Objective: The objective of this project is to explore the impact of different color spaces on the performance of Convolutional	Intelligence
		Neural Networks (CNN) for image classification tasks. By converting images into various color spaces such as RGB, HSV,	
		and YUV, the model will be trained to evaluate how color	
		representation affects classification accuracy. The results will	
		offer insights into optimizing CNN-based image classification	
13	TMMAAI345	using diverse color space transformations. Classification of Oral Cancer Into Pre-Cancerous	Imaga
15	1 1/11/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/1/	Stages From White Light Images Using LightGBM	Image Processing/Artificial
		Algorithm	Intelligence
		<i>Objective</i> : The objective of this project is to classify oral cancer	0
		into pre-cancerous stages using white light images. Advanced	
		image processing techniques will be applied to extract relevant features, and the LightGBM algorithm will be employed for	
		efficient classification. The model's performance will be	
		evaluated using accuracy metrics to enhance early detection of	
1.4		pre-cancerous conditions.	т
14	TMMAAI346	Artificial Intelligence Techniques for Landslides Prediction Using Satellite Imagery	Image Processing/Artificial
		Objective : The objective of this project is to develop an AI-based	Intelligence
		model for landslide prediction using satellite imagery. By	Interingence
		employing deep learning techniques and image analysis, the	
		model aims to detect and forecast potential landslide-prone areas. The goal is to improve early warning systems, enhance	
		disaster management, and mitigate risks in vulnerable regions.	
15	TMMAAI347	Optimized Brain Tumor Detection: A Dual-Module	Image
		Approach for MRI Image Enhancement and Tumor	Processing/Artificial
		Classification	Intelligence
		<i>Objective</i> : The objective of this project is to develop an optimized dual-module system for brain tumor detection using MRI images.	
		The first module focuses on image enhancement, utilizing	
		advanced techniques for improving MRI clarity, while the second	
		module classifies tumor types through a deep learning-based model. The aim is to enhance diagnostic accuracy and efficiency	
		in brain tumor detection.	
16	TMMAAI348	Automated Tool Support for Glaucoma Identification	Image
		with Explainability Using Fundus Images	Processing/Artificial
			Intelligence

		Objective: The objective of this project is to develop an automated tool for the identification of glaucoma using fundus images, integrating deep learning algorithms to classify the condition. The system will include explainability features to provide clear insights into the decision-making process. This will aid clinicians in understanding and trusting the model's results for better diagnosis.	
17	TMMAAI338	Pipelined Structure in the Classification of Skin Lesions Based on Alexnet CNN and SVM Model With Bi-Sectional Texture Features <i>Objective: The objective of this project is to develop a pipelined</i> <i>structure for the classification of skin lesions by leveraging</i> <i>AlexNet CNN for feature extraction and SVM for classification.</i> <i>Bi-sectional texture features will be incorporated to enhance the</i> <i>model's ability to differentiate between lesion types. The pipeline</i> <i>aims to improve accuracy and reliability in skin lesion</i> <i>classification for medical diagnosis.</i>	Image Processing/Artificial Intelligence
18	TMMAAI340	A Transfer Learning-Based Approach for Brain Tumor Classification <i>Objective:</i> To classify brain tumors using deep learning with the Inception v3 network, leveraging pre-processing techniques for accurate identification of glioma, meningioma, pituitary tumor, and non-tumorous conditions.	Image Processing/Artificial Intelligence
19	TMMAAI361	Artificial Intelligence Techniques for Landslides Prediction Using Satellite Imagery. Objective: The objective of this study is to develop an AI-driven framework leveraging satellite imagery and the ResNet101 deep learning model for accurate landslide prediction, enabling effective disaster risk mitigation and land management.	Image Processing/Artificial Intelligence
20	TMMAAI367	Optimized Brain Tumor Detection: A Dual-Module Approach for MRI Image Enhancement and Tumor Classification <i>Objective: The proposed method enhances brain tumor detection</i> <i>by applying adaptive Wiener filtering for noise reduction, RBF</i> <i>neural networks for feature extraction, and SVM for</i> <i>classification, improving tumor diagnosis and treatment</i> <i>planning.</i>	Image Processing/Artificial Intelligence

TRENDY MATLAB ACADEMIC LIVE PROJECTS

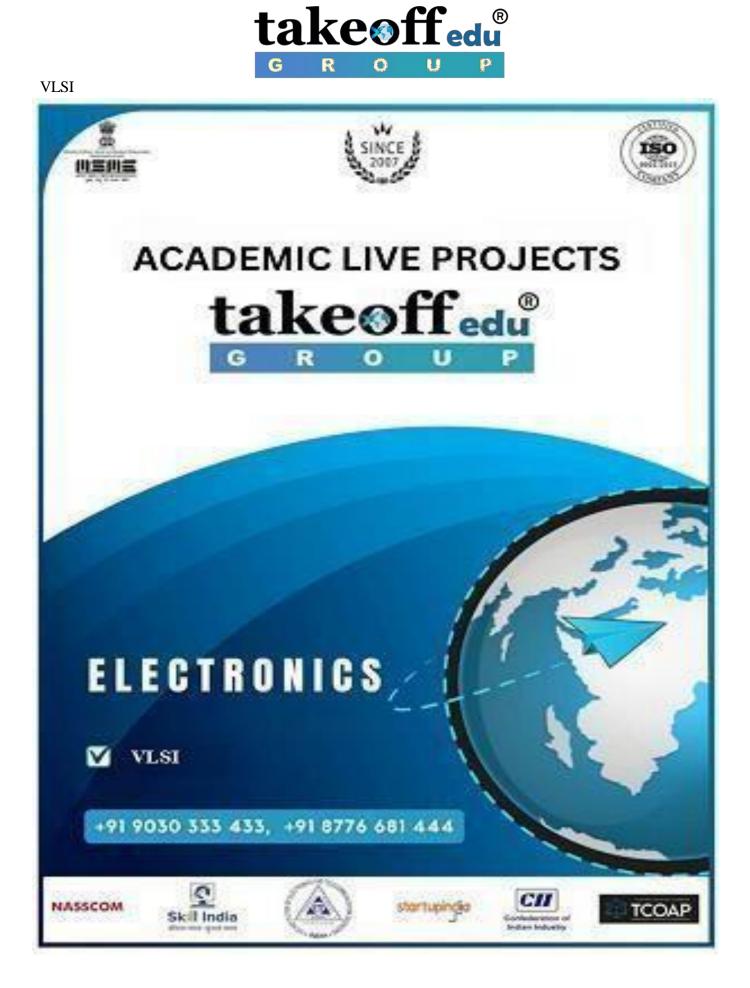
S. No	Project Code	Title	Domain
1		Multi-Class Classification of Plant Leaf Diseases Using	Image
		Feature Fusion of Deep Convolutional Neural Network	Processing/
	TMMAAI323	and Local Binary Pattern	Artificial
		Objective: This study develops a dual-stage classification system	Intelligence
		combining CNN and LBP feature fusion to accurately identify plant	
2		species and diseases.	T
2	TMMAAI324	Skin Disease Detection System Using Convolutional Neural Network.	Image Processing/
		Objective: The objective is to develop a CNN-based system to	Artificial
		accurately classify skin diseases, enhancing diagnosis through	Intelligence
		advanced image processing and model training techniques.	intelligence
3	TMMAAI330	Genetic Algorithm based Feature Selection to Enhance	Image
-		Breast Cancer Classification.	Processing/
		Objective : This Objective utilizes genetic algorithms for image	Artificial
		clustering, followed by feature extraction and classification using	Intelligence
		Random Forest to achieve efficient image processing and prediction.	_
4	TMMAAI331	Diagnosis of skin diseases using Convolutional Neural	Image
		Networks	Processing/
		Objective : Develop an automated skin disease diagnosis system using CNNs for accurate, consistent classification and treatment	Artificial
		recommendations, reducing dependency on practitioner experience	Intelligence
		and expediting dermatological care.	
5	TMMAAI334	GAUSSIAN WEIGHTED DEEP CNN WITH LSTM FOR	Image
		BRAIN TUMOR DETECTION	Processing/
		Objective : To enhance brain tumor detection accuracy, we propose	Artificial
		GWDeepCNN-LSTM, combining advanced image preprocessing,	Intelligence
		segmentation, feature extraction, and LSTM-based classification.	~ .
6	TMMACO87	A HYBRID FAULT-TOLERANT ROUTING BASED ON	Communic
		GAUSSIAN NETWORK FOR WIRELESS SENSOR	ation
		NETWORK <i>Objective:</i> The Primary goal is to design a robust and efficient	
		routing protocol that enhance the fault tolerance capabilities of	
		WSNs.	
7	TMMAAI335	DIABETIC RETINOPATHY STAGE CLASSIFICATION	Image
		USING CONVOLUTIONAL NEURAL NETWORKS	Processing/
		Objective : To accurately classify Diabetic Retinopathy stages using	Artificial
		deep learning, specifically Convolutional Neural Networks, to	Intelligence
		enhance the diagnosis and management of diabetes-related retinal damage by categorizing images into five stages.	
8	TMMACO136	SWEEPER: Secure Waterfall Energy-Efficient Protocol-	Communic
		Enabled Routing in FANET	ation
		Objective : To develop a secure and energy-efficient routing protocol	
		for FANETs using the SWEEPER framework, focusing on trust-	
		based node selection, cryptographic key management, and reducing	
		packet loss for improved performance.	

9	TMMAAI326	Neural Network-Based Image Processing for Vitamin Deficiency Detection Using CNN Objective: This project uses CNNs to detect vitamin deficiencies through image analysis of body parts, enabling early diagnosis and accurate intervention.	Image Processing/ Artificial Intelligence
10	TMMASP199	Improving SNR, MSE and Denoising of EMG- Contaminated ECG Signals using EMD Objective: This study aims to enhance ECG clarity by using Empirical Mode Decomposition (EMD) to effectively suppress EMG noise without significant signal distortion.	Signal Processing
11	TMMACO137	Performance Analysis of Millimeter-Wave Massive MU- MIMO with 128 Base-Station Antennas for Private Underground Mine Communications Objective: To assess MU-MIMO mmWave channel performance in underground mines, focusing on path loss, delay spreads, coherence bandwidth, and capacity at 28 GHz.	Communic ation
12	TMMAAI351	CLASSIFICATION OF FRUITS RIPENESS USING CNN WITH MULTIVARIATE ANALYSIS BY SGD Objective: This study aims to develop an automated system for fruit ripeness classification using a CNN with VGG16 architecture optimized by Stochastic Gradient Descent. The model accurately categorizes ripe and rotten fruit images across bananas, papayas, and oranges.	Image Processing
13	TMMAAI352	Digital Forensics for Skulls Classification in Physical Anthropology Collection Management Objective This study aims to develop an efficient, high-accuracy system for classifying human skulls based on the presence of a mandible, utilizing advanced image processing techniques and machine learning for improved collection management.	Image Processing
14	TMMACO140	Robust WHT-GFDM for the Next Generation of Wireless Networks <i>Objective</i> This study aims to develop a robust, low-latency communication system for 5G networks by combining Walsh- Hadamard Transform (WHT) and Generalized Frequency Division Multiplexing (GFDM), optimizing performance in frequency- selective channels.	Communic ation
15	TMMACO141	Efficient Resource Allocation with Dynamic Traffic Arrivals on D2D Communication for Beyond 5G Networks Objective This paper proposes a novel optimization approach for device-to-device (D2D) communication in B5G networks, enhancing spectral efficiency and minimizing latency through power control and resource allocation algorithms.	Communic ation
16	TMMAAI355	Fish Disease Detection Using Image Based Machine Learning Technique in Aquaculture Objective This study proposes a machine learning-based fish disease detection system using image processing techniques. It employs pre- processing and SVM classification to distinguish between fresh and infected fish, providing early, accurate disease identification for sustainable aquaculture.	Image Processing/ Artificial Intelligence
17	TMMAAI359	Advanced Drone Classification Using Light CNN and Image Processing for DJI Models Objective To develop a robust classification system for small drones, this study utilizes radar-captured images and applies advanced image processing and Light CNN techniques to accurately identify DJI drone models, enhancing security and surveillance.	Image Processing/ Artificial Intelligence

18	TMMASP204	Extracting Fetal ECG Signals Through a Hybrid	Signal
		Technique Utilizing Two Wavelet-Based Denoising	Processing
		Algorithms	
		Objective The objective of this study is to develop hybrid algorithms combining Stationary Wavelet Transform (SWT) and Recursive	
		Least Squares (RLS) for precise fetal ECG extraction, improving	
		signal clarity and diagnostic accuracy.	
19	TMMAWS141	AN ENERGY-EFFICIENT HYBRID CLUSTERING	Communic
		TECHNIQUE (EEHCT) FOR IOT-BASED	ation
		MULTILEVEL HETEROGENEOUS WIRELESS	
		SENSOR NETWORKS	
		Objective The objective of this research is to develop an Energy-	
		Efficient Hybrid Clustering Technique (EEHCT) for IoT-based	
		Heterogeneous Wireless Sensor Networks (HWSN) to minimize	
		energy consumption, balance network load, and enhance network	
•		lifetime through a mixed static and dynamic clustering approach.	
20	TMMACO142	WiRa: Enabling Cross-Technology Communication from	Communic
		WiFi to LoRa with IEEE 802.11ax	ation
		Objective The objective of this study is to propose the WiRa protocol,	
		enabling efficient Cross-Technology Communication (CTC) between WiFi (IEEE 802.11ax) and LoRa by simulating LoRa waveforms	
		using 802.11ax's OFDMA, improving data transfer efficiency.	
21	TMMAAI362	Automated detection of diabetic retinopathy using	Image
21		convolutional neural networks on a small dataset	Processing/
		Objective This study presents an automated diabetic retinopathy	Artificial
		detection approach using DenseNet-121 CNN, with preprocessing,	Intelligence
		segmentation, and data augmentation to classify images into four	8
		categories, ensuring accurate screening and early detection.	
22	TMMAIP442	Enhancement of CCTV Low-Quality Images using A	Image
		Modified Singular Value Decomposition (MSVD)	Processing
		Approach.	
		Objective The objective of this study is to enhance low-quality CCTV	
		video frames using Modified Singular Value Decomposition (MSVD), improving visual clarity and performance metrics for	
		surveillance systems through MATLAB-based image processing	
		techniques.	
23	TMMASP207	One-Dimensional Shallow Neural Network Using Non-	Signal
		Fiducial Based Segmented Electrocardiogram for User	Processing
		Identification System	C
		Objective The objective is to develop a user identification system	
		using ECG signals, incorporating non-fiducial segmentation,	
		preprocessing, 1D-CNN for feature extraction, and SVM for	
		classification to ensure accurate and secure authentication.	-
24	TMMAAI366	Wafer defect localization and classification using deep	Image
		learning techniques	Processing/
		Objective The objective is to develop a deep learning-based YOLOv2	Artificial
		model for precise wafer defect localization and classification,	Intelligence
		<i>enhancing semiconductor manufacturing by automating defect detection, improving efficiency, and ensuring product quality.</i>	
		aelection, improving efficiency, and ensuring product quality.	

APPLICATION / STANDARD MATLAB ACADEMIC LIVE PROJECTS

S. No	Project Code	Title	Domain
1	TMMAAI325	UPI FRAUD DETECTION USING MACHINE LEARNING	Image Processing/
		Objective : To enhance UPI transaction security, our model uses Random Forest to detect fraud by analyzing transaction details and improving accuracy.	Artificial Intelligence
2	TMMASP200	Classification of Heart Diseases Based on Cardiovascular Signals using Deep Learning Objective: Develop an integrated CNN and ResNet-based system enhanced by Osprey Optimization Algorithm for accurate heart disease classification.	Signal Processing
3	TMMAAI336	Leaf disease detection using Matlab and deep learning Objective: Develop an automated system for detecting and classifying leaf diseases using advanced image processing and deep learning techniques, providing real-time diagnostics and treatment recommendations for improved agricultural management.	Image Processing/ Artificial Intelligence
4	TMMAAI337	AI-Powered Prostate Cancer Detection using image processing & deep learning. Objective: To develop an AI-powered prostate cancer detection system that utilizes advanced image processing and deep learning to enhance diagnostic accuracy, facilitate early detection, and improve treatment planning for better patient outcomes.	Image Processing/ Artificial Intelligence
5	TMMASP202	ENHANCING SPEECH QUALITY IN NOISY ENVIRONMENTS USING FILTERING TECHNIQUES <i>Objective:</i> To improve speech signal quality by reducing background noise using techniques like Spectral Subtraction and Wiener filtering, focusing on enhancing Mean Square Error (MSE) and Signal-to-Noise Ratio (SNR).	Signal Processing
6	TMMACO139	A Fuzzy Congestion Control in Wireless Sensor Networks based on Spider Objective: The objective of this research is to develop a Fuzzy Congestion Control method for Wireless Sensor Networks using the Spider Monkey Optimization Algorithm to improve data transmission efficiency and reduce packet loss.	Communic ation
7	TMMAWS96	Optimized Fuzzy Clustering using Moth Flame Optimization Algorithm in Wireless Sensor Networks Objective : The objective of this paper is to propose a fuzzy clustering and congestion control scheme using Fuzzy Logic Controllers and	Communic ation


		Moth-Flame Optimization to minimize energy consumption and	
8	TMMAWS140	enhance WSN lifespan. Cluster Head Selection Strategy of WSN Based on Binary	Communic
0	1 1/11/1/1/1/1/05140	Multi-Objective Adaptive Fish Migration Optimization	ation
		Algorithm	ation
		Objective : The objective of this research is to optimize cluster head	
		selection in wireless sensor networks (WSNs) using the Binary Multi-	
		Objective Adaptive Fish Migration Optimization (BMAFMO)	
		algorithm to enhance energy efficiency and performance.	
9	TMMAAI349	Internet of Things and Deep Learning Enabled Diabetic	Image
		Retinopathy Diagnosis Using Retinal Fundus Images	Processing/
		Objective : The objective of this system is to enhance early detection	Artificial
		and classification of diabetic retinopathy and macular edema using	Intelligence
		advanced image processing and deep learning, enabling accurate diagnosis and personalized treatment recommendations for effective	
		patient management.	
10	TMMAAI350	Detection of Various Lung Diseases Including Covid-19	Image
10		Using A Lightweight CNN Architecture.	Processing/
		<i>Objective</i> : The objective of this study is to develop a lightweight CNN	Artificial
		model for efficient, accurate classification of lung diseases like	Intelligence
		COVID-19 and pneumonia from chest X-rays, optimizing real-time	C
11		diagnosis capability.	-
11	TMMAAI353	EARLY DETECTION OF FUNGAL DISEASES IN	Image
		CROPS	Processing/
		Objective: Develop a deep learning-based system for early detection of fungal diseases in crop leaves, enhancing diagnostic accuracy and	Artificial
		supporting sustainable agriculture through efficient, user-friendly,	Intelligence
		and non-invasive disease monitoring.	
12	TMMASP203	Infant Cry Classification Through Audio Signal	Signal
		<i>Objective:</i> The objective is to classify infant cries into categories like	Processing
		hunger, pain, or anger, using an Artificial Neural Network (ANN)	C
		with spectrogram features extracted via Short Time Fourier	
12		<i>Transform (STFT) and optimized using PCA to enhance accuracy.</i>	τ
13	TMMAAI354	Bio degradable and non-bio degradable home Waste	Image Dragossing/
		segregation and recycling Objective: The project aims to segregate home waste into	Processing/ Artificial
		biodegradable and non-biodegradable categories using a deep	Intelligence
		learning approach. By employing a CNN, the system classifies waste	Intelligence
		images, ensuring efficient recycling and promoting environmental	
		sustainability.	
14	TMMAAI356	Smart Aquaponics and Hydroponics Monitoring Using	Image
		IoT	Processing/
		Objective: The objective of this project is to develop an automated disease detection system for hydroponic plants and aquatic fish using	Artificial
		CNN-based deep learning, ensuring accurate classification and	Intelligence
		real-time intervention capabilities.	
15	TMMAAI357	AMD diagnosis using OCT images and Diabetic diagnosis	Image
		using Fundus Images in Matlab	Processing/
		Objective: The objective of this study is to develop a deep learning-	Artificial
		based diagnostic framework for accurately detecting and classifying	Intelligence
		Diabetic Retinopathy (DR) and Age-Related Macular Degeneration	-
16	TRADA A 1370	(AMD) stages using medical imaging.	Turne
16	TMMAAI358	Developing Audio Narratives from Visual images for the	Image Processing/
		Visually Impaired <i>Objective:</i> The objective of this study is to develop a deep learning-	Processing/ Artificial
		based diagnostic framework for accurately detecting and classifying	Intelligence
		Diabetic Retinopathy (DR) and Age-Related Macular Degeneration	memgence
		(AMD) stages using medical imaging.	

17	TMMAAI360	Multistage Classification of Eye Diseases Using MATLAB:	Image
		Diagnosis, Staging, and Real-Time Visualization via	Processing/
		ThingSpeak	Artificial
		Objective: The objective of this research is to develop a MATLAB-	Intelligence
		based automated system using DenseNet and CNNs for precise	
		classification, staging, and real-time monitoring of multiple eye	
10		diseases, enhancing early diagnosis and treatment.	<u> </u>
18	TMMASP205	Compensating for Respiratory Artifacts in Blood Pressure	Signal
		Waveforms Using MATLAB	Processing
		Objective: The objective of this project is to analyze online blood pressure and respiratory signal datasets to calculate breathing rates,	
		extract features like Respiratory Sinus Arrhythmia (RSA), and	
		classify health status using an SVM classifier, ensuring high	
		accuracy.	
19	TMMAC0143	Cellular Network Signal Strength Analyser in Real Time	Communic
		Monitoring System	ation
		Objective: The objective is to evaluate the cellular network signal's	
		robustness by testing its performance in various environments	
		(kitchen, hall, bedroom, bathroom, terrace, and remote locations) to	
•		ensure steady data rates and throughput.	<u> </u>
20	TMMASP206	Real-Time Speech Signal Denoising Using Wavelet	Signal
		Transform Techniques	Processing
		Objective: The objective of this study is to enhance voice signal denoising by improving the Wavelet Threshold method in	
		combination with a Moving Average Filter (MAF), effectively	
		reducing noise in non-stationary random speech signals through	
		multi-resolution analysis and wavelet reconstruction.	
21	TMMAAI363	Credit card fraud detection	Image
		Objective: Develop a credit card fraud detection system using a	Processing/
		Random Forest algorithm to analyze transaction data, identify	Artificial
		anomalies, and classify fraudulent activities, ensuring real-time	Intelligence
		prevention and enhanced security.	_
22	TMMAAI364	Automated Left Ventricle Segmentation in MRI Using	Image
		UNet Architecture in MATLAB	Processing/
		Objective: Develop an automated left ventricle (LV) segmentation	Artificial
		method in cardiac MRI using UNet architecture, achieving precise	Intelligence
		and efficient results through MATLAB's image processing tools and PSNR-based evaluation.	
23	TMMAAI365	Poultry disease detection method using deep learning	Image
25	1 1011011/11/000	technology for different breads	Processing/
		Objective: The objective is to develop a MATLAB-based system	Artificial
		using deep learning techniques, including CNNs, for early poultry	Intelligence
		disease detection via vocal, dropping, and behavioural classification	
		to aid timely diagnosis.	
24	TMMAC0144	Design and Implementation of DS-CDMA Modem Using	Communic
		BPSK	ation
		Objective: The objective is to simulate and implement DS-CDMA	
		signal transfer using BPSK modulation, leveraging MATLAB for efficient data communication.	
25	TMMAC0145	BER ANALYSIS OF CHANNEL CODING	Communic
25		TECHNIQUES FOR 5G NETWORKS	ation
		Objective: The objective is to analyze and evaluate low-complexity	anon
		error correction coding techniques, focusing on LDPC and	
		convolutional codes, for enhancing Bit Error Rate (BER)	
		performance in next-generation $5G$ wireless communication	
		systems.	

26	TMMAIP443	Automated Segmentation of Retinal Blood Vessels using Optimized Gabor Filter with Local Entropy Thresholding Objective: The objective of this paper is to propose an automated method for segmenting retinal blood vessels using an optimized Gabor filter and local entropy thresholding, enhancing diagnosis of eye-related diseases.	Image Processing
27	TMMAAI368	Attention to Lesion: Lesion-Aware Convolutional Neural Network for Retinal Optical Coherence Tomography Image Classification Objective: This paper proposes a lesion-aware convolutional neural network (LACNN) for retinal OCT image classification, enhancing accuracy by focusing on lesion regions for early diagnosis of retinal abnormalities like drusen, CNV, and DME.	Image Processing/ Artificial Intelligence
28	TMMAAI369	Semantic Segmentation in Autonomous Vehicles Objective: The objective is to implement a vehicle and person detection system using YOLOv2 in MATLAB 2020a, focusing on accurate object identification and localization within a controlled dataset for effective real-time detection.	Image Processing/ Artificial Intelligence
29	TMMAAI370	Bone Fracture Detection using CNN <i>Objective:</i> The objective of this project is to develop a deep learning- based system using Convolutional Neural Networks (CNNs) for accurate bone fracture detection and classification into Mild, Moderate, and Severe categories through an intuitive GUI interface.	Image Processing/ Artificial Intelligence

VLSI

S.No	Project Code	Project Name	Domain
1	TVMABE252	Title: A Single Ring-Oscillator-Based Test Structure for Timing Characterization of Dynamic Circuit <i>Objective:</i> this approach aims to simplify the testing process while maintaining accuracy.	BackEnd Domains / Transistor Logic
2	TVMABE251	Title: 16-Bit Carry Look-Ahead Adder: Design and Layout with Cadence Tools Top of Form <i>Objective:</i> The primary goal is to create a 16-bit carry look-ahead adder, which is a type of high-speed digital adder architecture. This design aims to achieve fast addition operations.	(BackEnd Domains / Transistor Logic
3	TVPGOT07	Title: A Lightweight Image Encryption Algorithm Based on Secure Key Generation <i>Objective:</i> This is crucial for applications running on devices with limited processing power or memory. Secure Key Generation The research focuses on developing a robust method for generating secure keys. This is essential for maintaining the security of the encrypted images over time	Others / Matlab Interfacing
4	TVMAFE615	Title: Decoder Reduction Approximation Scheme for Booth Multipliers <i>Objective:</i> Decoder Reduction The core idea is to reduce the complexity of the decoder stage in Booth multipliers.	Front End Domai ns / Testing
5	TVPGFE338	Title: Analysis of an Efficient Fault Tolerant Linear Feedback Shift Register for Low PowerApplications <i>Objective:</i> designing an efficient fault-tolerant LFSR that is suitable for low-power applications. This involves addressing both fault tolerance and power efficiency simultaneously.	Front End Domains / Arithmetic Core
6	TVPGFE339	Title: Analysis of an Efficient Fault Tolerant Linear Feedback Shift Register for Low PowerApplications <i>Objective:</i> designing an efficient fault-tolerant LFSR that is suitable for low-power applications. This involves addressing both fault tolerance and power efficiency simultaneously.	Front End Domains / Communications and Crypto Core
7	TVMAFE609	Title: A New Input Grouping and Sharing Method to Design Low Complexity FFT Implementation <i>Objective:</i> performance benchmarks, and potential applications such as digital signal processing, image processing, or wireless communication systems where FFT algorithms are commonly used.	Front End Domains / Finite State Machines
8	TVMAFE610	Title: A New Input Grouping and Sharing Method to Design Low Complexity FFT Implementation <i>Objective:</i> performance benchmarks, and potential applications such as digital signal processing, image processing, or wireless communication systems where FFT algorithms are commonly used.	Front End Domains / FPGA

VLSI			
9	TVMAFE611	Title: A New Input Grouping and Sharing Method to Design Low Complexity FFT Implementation <i>Objective:</i> performance benchmarks, and potential applications such as digital signal processing, image processing, or wireless communication systems where FFT algorithms are commonly used.	Front End Domains / DSP Core
10	TVMAFE612	Title: A New Input Grouping and Sharing Method to Design Low Complexity FFT Implementation <i>Objective:</i> performance benchmarks, and potential applications such as digital signal processing, image processing, or wireless communication systems where FFT algorithms are commonly used.	Front End Domains / Arithmetic Core
11	TVMAFE613	Title: A New Input Grouping and Sharing Method to Design Low Complexity FFT Implementation <i>Objective:</i> performance benchmarks, and potential applications such as digital signal processing, image processing, or wireless communication systems where FFT algorithms are commonly used.	Front End Domains / Testing
12	TVPGOT06	Title: A Low Cost FPGA Implementation of Retinex Based Low- Light Image EnhancementAlgorithm <i>Objective:</i> discuss potential applications such as surveillance systems, mobile phone cameras, or medical imaging equipment where low-light image enhancement is crucial.	Others / Matlab Interfacing
13	TVMAFE608	Title: Analysis of an Efficient Fault Tolerant Linear Feedback Shift Register for Low PowerApplications <i>Objective:</i> The main goal seems to be designing an efficient fault- tolerant LFSR that is suitable for low-power applications. This involves addressing both fault tolerance and power efficiency simultaneously.	Front End Domains / FPGA
14	TVPGBE169	Title: The hybrid full adder following circuit XOR gate and 2:1 multiplexer using pass transistoralong with PFAL adiabatic logic style and 32-bit adders <i>Objective:</i> The primary objective of this hybrid full adder circuit using XOR, multiplexer, pass transistor logic, and PFAL is to create a low-power, high-speed, and area-efficient arithmetic unit that can be extended to build 32-bit adders, suitable for modern digital circuits with strict power and performance requirements.	Back End Domains / Transistor Logic
15	TVMABE246	Title: design and analysis of low-power and area efficientmaster-slave flip-flop <i>Objective:</i> To create a low-power master-slave flip-flop design that minimizes power consumption while maintaining acceptable performance characteristics.	Back End Domains / Transistor Logic
16	TVMABE241	 Title: A Benchmark of Cryo CMOS Embedded SRAM DRAMs in 40 nm CMOS <i>Objective:</i> This work compares eight different dynamic and static memory cell designs, embedded in identical memory architectures in a nanometer CMOS process typically adopted for QC cryo-CMOS interfaces 	Back End Domains / Core Memories

VLSI			
17	TVMAFE614	Title: Decoder Reduction Approximation Scheme for Booth Multipliers <i>Objective:</i> Decoder Reduction The core idea is to reduce the complexity of the decoder stage in Booth multipliers. This is typically the most computationally intensive part of the multiplier, responsible for determining the sign and magnitude of each partial product.	FrontEnd Domains / FPGA
18	TVMABE249	 Title: 16-Bit Carry Look-Ahead Adder: Design and Layout with Cadence Tools Top of Form <i>Objective:</i> The primary goal is to create a 16-bit carry look-ahead adder, which is a type of high-speed digital adder architecture. This design aims to achieve fast addition operations. 	BackEnd Domains / Cadence EDA
19	TVMABE250	Title: 16-Bit Carry Look-Ahead Adder: Design and Layout with Cadence Tools Top of Form <i>Objective:</i> The primary goal is to create a 16-bit carry look-ahead adder, which is a type of high-speed digital adder architecture. This design aims to achieve fast addition operations.	BackEnd Domains / Low Power VLSI
20	TVMABE255	Title: Design and Study the Performance of a CMOS-Based Ring Oscillator Architecture for 5GMobile Communication <i>Objective:</i> CMOS-Based Ring Oscillator Design The primary goal is to design a ring oscillator architecture using complementary metal-oxide-semiconductor (CMOS) technology. This choice of technology is crucial for 5G applications due to its scalability and low power consumption.	Back End Domains / Transistor Logic
21	TVMABE253	Title: Design and Study the Performance of a CMOS-Based Ring Oscillator Architecture for 5GMobile Communication <i>Objective:</i> CMOS-Based Ring Oscillator Design The primary goal is to design a ring oscillator architecture using complementary metal-oxide-semiconductor (CMOS) technology. This choice of technology is crucial for 5G applications due to its scalability and low power consumption.	Back End Domains/ Cadence EDA
22	TVMABE254	Title: Design and Study the Performance of a CMOS-Based Ring Oscillator Architecture for 5GMobile Communication <i>Objective:</i> CMOS-Based Ring Oscillator Design The primary goal is to design a ring oscillator architecture using complementary metal-oxide-semiconductor (CMOS) technology. This choice of technology is crucial for 5G applications due to its scalability and low power consumption.	Back End Domains / Low Power VLSI
23	TVMABE256	Title: hybrid full adder circuit utilizing pass transistor and pfal Adiabatic logic style Objective: allows for energy-efficient operation. • Adiabatic logic is designed to minimize power dissipation by gradually changing signal levels over time. • This approach helps reduce switching losses and overall power consumption.	Back End Domains / Low Power VLSI
24	TVMABE260	Title: Realization of Complete Boolean Logic and Combinational Logic Functionalities on aMemristor-Based Universal Logic Circuit	Back End Domains / Low Power VLSI

(Page 4)

Website:

VLSI			
		<i>Objective:</i> more flexible, energy-efficient, and compact digital systems in various fields of electronics and computing.	
25	TVMAFE618	Title: Energy Efficient Compact Approximate Multiplier for Error- Resilient Applications Objective: The main objective appears to be designing an energy- efficient, compact approximate multiplier suitable for error- resilient applications	Front End Domains / FPGA
26	TVMAFE627	Title: 32-bit fpga based alu employing reversible logic <i>Objective:</i> Power efficiency: Reversible logic can help reduce power consumption by allowing for easier energy recovery	Front End Domains / FPGA
27	TVMAFE630	Title: Artificial intelligence techniques for encrypt images based on the chaotic system implemented on field-programmable gate array <i>Objective:</i> The main objective appears to be developing a novel method for image encryption and decryption using artificial neural network (ANN)-based chua chaotic system (CCS) implemented on field-programmable gate arrays (FPGAs)	Front End Domai ns / FPGA
28	TVMAFE631	Title: Design and Verification of a High-Performance RISC-VSOC with SPI Protocol at IP-Level for Deep Learning in MedicalImagingObjective: The main objective appears to be designing and verifyinga high-performance RISC-V System-on-Chip (SoC) with a SerialPeripheral Interface (SPI) protocol implemented at the IP level,specifically for deep learning applications in medical imaging	Arithmetic Core
29	TVMAFE632	Title: Low Power Crypto-chip design for IoT applications <i>Objective:</i> The main objective appears to be designing and implementing a low-power cryptographic chip for Internet of Things (IoT) applications. Specifically, the focus is on creating a low-power RISC-V processor with integrated cryptographic acceleration for IoT devices.	Comm unicati ons
30	TVMAFE633	Title: Risc processer with Fft are architecture <i>Objective:</i> The main objective appears to be designing a RISC (Reduced Instruction Set Computing) microprocessor CPU that incorporates Fast Fourier Transform (FFT) capabilities. This design aims to address the specific needs of digital signal processing applications.	Front End Domains / FPGA
31	TVMABE266	Title: Design and Verification of 8X8 Wallace Tree Multiplier <i>Objective:</i> The primary objective of this design is to create an efficient digital circuit that performs multiplication operations on two 8-bit binary numbers using the Wallace Tree algorithm 5. This multiplier is designed to be faster and more area-efficient compared to traditional methods of multiplication.	Low Power VLSI
32	TVMABE267	Title: Design and performance analysis of 4-bit ALU for Nano- Processor design for low area, Low power and minimum delay using 32nm CMOS technology <i>Objective:</i> Operates efficiently with low power consumption	Low power VLSI
33	TVMABE268	Title: Design and performance analysis of 8-bit ALU for Nano- Processor design for low area, Low power and minimum delay using 32nm CMOS technology Objective: Operates efficiently with low power consumption	Low power VLSI

⁽Page 5)

VLSI 34	TVMABE273	Title: A low-power 8 bit 1MSper s single-ended SAR	Back End
J -	I VINADE275	ADC in 130-nm CMOS for medical devices <i>Objective:</i> Operates at 1 MS/s sampling rate Achieves low power consumption Utilizes 130-nm CMOS technology Is suitable for medical device applications	Domai ns\ Low power VLSI
35	TVMAFE634	Title: Exploring the Usage of Fast Carry Chains to Implement Multistage Ring Oscillators on FPGAs: Design and Characterization Objective: Explore the usage of fast carry chains for implementing multistage ring oscillators on FPGAs Design and characterize these oscillators	Front End Domai ns\ Comm unicati ons
36	TVMAFE641	Title: Verilog-Based Automatic Bus Ticketing System Objective: The project is to design and implement an automated bus ticketing system using Verilog for hardware description. The system will handle ticket issuance, fare calculation, and user interaction through a digital interface.	Front End Domains / Finite State Machines
37	TVMAFE640	Title: Toward Designing High-Speed Cost-Efficient Quantum Reversible Carry Select Adders Objective: The project is to develop a quantum reversible carry select adder that achieves high-speed operation while minimizing cost. The project aims to explore quantum computing principles to enhance the performance of digital adders in terms of speed and efficiency.	Front End Domains / Arthimeti c core
38	TVMAFE639	Title: Implementation Of I2C Protocol With Adaptive Baud Rate Using Verilog Objective: The project is to design an I2C communication protocol that dynamically adjusts its baud rate based on system conditions. Using Verilog, the project aims to implement a flexible and efficient I2C interface for reliable data transfer.	Front End Domai ns\ Comm unicati ons
39	TVMAFE638	Title: High-Speed Energy-Efficient Fixed-Point Signed Multipliers for FPGA-Based DSP Applications Objective: The project is to design and optimize fixed-point signed multipliers for use in digital signal processing (DSP) on FPGA platforms. The focus will be on achieving high-speed operation while minimizing energy consumption.	Front End Domains / Arthimeti c core
40	TVMAFE637	Title: High-Speed Energy-Efficient Fixed-Point Signed Multipliers for FPGA-Based DSP Applications Objective: FPGA – Controlled Automated Coffee Maker using Verilog	Front End Domains / Arthimeti c core

(Page 6)

VLSI		Titles Design and Analysis of M. 14 Destand Comment. II is f	Front
41	TVMAFE636	Title: Design and Analysis of Multi-Protocol Conversion Unit for SPI, I2C and UART Objective: This project is to design and develop a multi- protocol conversion unit that can seamlessly convert data between three widely used communication protocols: Serial Peripheral Interface (SPI), Inter-Integrated Circuit (I2C), and Universal Asynchronous Receiver-Transmitter (UART).	End Domai ns∖ Comm unicati ons
42	TVMAFE642	Title: A 32-Bit Ripple-Ling Hybrid Carry Adder OBJECTIVE: To design and implement a high-performance adder that combines the efficiency of ripple carry and carry look-ahead techniques to optimize speed and power consumption. The hybrid approach aims to reduce propagation delay while maintaining simplicity and scalability.	Comm unicati ons\D SP
43	TVMABE276	Title: A 32-Bit Ripple-Ling Hybrid Carry Adder Objective: To design and implement a high-performance adder that combines the efficiency of ripple carry and carry look-ahead techniques to optimize speed and power consumption. The hybrid approach aims to reduce propagation delay while maintaining simplicity and scalability.	CADEN C E\LOW POWER
44	TVMAFE635	Title: Enhancing Security in FPGA-Based RISC-V Implementations Using Boolean Masking Techniques Objective: The primary goal seems to be enhancing the security of FPGA-based RISC-V implementations against various types of attacks, particularly side-channel attacks.	FPGA
45	TVMABE285	Title: Charge-sensitive amplifier design for high-speed interface readout front-end ASICs Objective: developing advanced circuit designs for amplifying small electrical charges quickly and efficiently in integrated circuits (ASICs) used in high-speed interfaces	CADEN C E\LOW POWER
46	TVMAFE640	Title: Toward Designing High-Speed Cost-Efficient Quantum Reversible Carry Select Adders Objective: The project is to develop a quantum reversible carry select adder that achieves high-speed operation while minimizing cost. The project aims to explore quantum computing principles to enhance the performance of digital adders in terms of speed and efficiency.	Front end/arith metic core

takeoffedu _{G R O U P}

VLSI			
47	TVMABE292	Title: A Two-Step Time-to-Digital Converter With 5.6-ps Resolution and 1–4255-?s Measurement Range Objective: Optimize power and area efficiency – The implementation is designed to be power-efficient and compact, making it practical for integration in modern electronic systems.	Cadence
48	TVMABE287	Title: A Physical-Based Artificial Neural Networks Compact Modeling Framework for Emerging FETsObjective: to develop a compact and efficient modeling framework that leverages artificial neural networks (ANNs) to accurately predict the electrical characteristics of emerging CMOS technologies. The framework aims to combine physical principles with machine learning techniques to improve modeling accuracy, reduce computational complexity, and support advanced semiconductor device design and circuit simulation in modern electronic	Transist or logic
49	TVMAFE647	 Title: A Low-Cost FPGA Implementation of Retinex Based Low Light Image Enhancement Algorithm Objective: The project is to design and implement a cost- efficient hardware architecture for real-time image enhancement in low-light conditions using the Retinex algorithm. The focus is on leveraging FPGA technology to achieve high processing speed, low hardware resource utilization, and improved visual quality for practical applications in surveillance, automotive vision, and consumer electronics. 	Front end/Finit e state machine s
50	TVMA01	Title: Compressor based Approximate Multipliers for Neural Network Accelerators Objective: to design and develop efficient approximate multipliers using compressor-based architectures to optimize the performance of neural network accelerators. The focus is on reducing power consumption, hardware complexity, and computation latency while maintaining acceptable accuracy, thereby enhancing the overall efficiency of machine learning applications in edge and embedded systems.	Front end/arith metic core
51	TVMABE289	Title: A Wideband Input Buffer Based on Cascade Complementary Source Follower Objective: The project is Wideband Operation – Designing an input buffer that can handle a broad frequency range with minimal signal distortion	Transist or logic
52	TVMAFE646	Title: Area-Efficient LFSR Based Stochastic Number Generators With Minimum Correlation Objective: Minimizing Correlation – Reducing the correlation in generated stochastic bitstreams, which is a common issue in LFSR-based SNGs, ensuring better randomness and accuracy in stochastic computing applications.	Front end/arith metic core

(Page 8)

VLSI			
53	TVMABE290	Title: Towards Silicon Carbide Monolithic Active Pixel Radiation Sensors Objective: These sensors are intended for applications in high- energy physics, space exploration, and medical imaging, where conventional silicon-based detectors may have limitations due to radiation damage and high-temperature conditions.	Cadence virtuoso
54	TVMABE291	Title: A 521pW, 0.016 V Line Sensitivity Self-Biased CMOSVoltage Reference With DIBL Effect Compensation UsingAdaptive VGS ControlObjective: The design operates at just 521 pW, making itsuitable for energy-constrained applications such as IoT devicesand biomedical implants. Minimizing line sensitivity – Thevoltage reference achieves a line sensitivity of 0.016%/V,ensuring stable operation despite fluctuations in the powersupply. Compensating for the Drain-Induced Barrier Lowering(DIBL) effect – A novel adaptive gate-source voltage controltechnique is introduced to counteract variations caused by theDIBL effect, which is critical in deep-submicron CMOStechnologies.	Cadence virtuoso

The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments

Surekha 5.0 * * * * *

Shahed

5 star to the company for its outstanding support, new technology & support

4.5 * * * * *

Very nice project support, the explanation with the kit were very useful and easy to understand...

Madhu Sudan Reddy

You guys always come up with exciting new technologies... impressive!!! Keep it up...

Our Customer Base

Tirupati, Andhra Pradesh-517502.

+91 90303 33433 | 0877-2261612

www.takeoffprojects.com | info@takeoffprojects.com 🛛 🗗 🖿 🥥 💽 /TakeoffEduGroup