

S. No	WEBSITE ID	TITLE	DOMAIN
1	TEMBMA3399	Smart Temperature-dependent Cooling of Solar Panel using Arduino The main objective of this project is to optimize solar panel performance and lifespan by implementing a smart temperature-dependent cooling system using Arduino for efficient heat regulation	Renewable
2	TEMBMA3400	Monitoring and Warning of Flooding Conditions Using IOT Based System The main objective of this project is to develop an IOT-based system for monitoring and providing timely warnings for flooding conditions, ensuring proactive response and mitigation measures	IOT
3	TEMBMA3401	IOT-Based Non-Intrusive Automated Driver Drowsiness Monitoring Framework for Logistics and Public Transport Applications to Enhance Road Safety The main objective of this project is to design and implement an IOT- based automated driver drowsiness monitoring framework for logistics and public transport applications, aimed at enhancing road safety through non-intrusive monitoring and timely alerts	IOT
4	TEMBMA3402	IOT-Based Navigation Assistance for Visually Impaired People The main objective of this project is to create an IOT-based navigation assistance system specifically for visually impaired individuals, providing them with guidance to enhance their mobility and independence	ЮТ
5	TEMBMA3403	IOT-Based Digital LPG Gas Cylinder Trolley to Prevent Hazards with Voice-Controlled Features The main objective of this project is to develop an IOT-based digital LPG gas cylinder trolley with voice-controlled features to enhance safety measures, prevent hazards, and ensure efficient handling of gas cylinders.	ЮТ

6	TEMBMA3404	IOT-Based Automatic Shed System to Prevent Unwanted Rain for Growing Crops The main objective of this project is to create an IOT-based automatic shed system to protect growing crops from unwanted rain, optimizing agricultural conditions and ensuring the optimal growth and health of the plants	ЮТ
7	TEMBMA3405	IOT Based IV Pole Monitoring System The main objective of this project is to design and implement an IOT- based IV pole monitoring system to enhance patient safety and healthcare efficiency by remotely monitoring IV fluid levels and providing alerts for timely interventions.	IOT
8	TEMBMA3406	Development of An Automated IOT-based Fish Tank Maintenance Assistive System The main objective of this project is to develop an automated IOT-based fish tank maintenance system for optimal water quality, temperature control, and feeding	ЮТ
9	TEMBMA3407	An IOT based Cost Effective Intelligent Irrigation System for Farmers The main objective of this project is to design and implement a cost- effective IOT-based intelligent irrigation system for farmers, enabling efficient water usage by integrating real-time environmental data, soil moisture monitoring, and automated control, thereby enhancing crop yield while minimizing water wastage and costs	IOT
10	TEMBMA3408	An IOT-Based COVID Patient Health Control System The main objective of this project is to develop an IOT-based COVID patient health control system to remotely monitor health data, reducing the risk of viral transmission	Biomedical

11	TEMBMA3409	Analysis of Soil Nutrients and Water Levels Using Internet of Things (IOT) for Different Land Use OptionsThe main objective of this project is to check soil parameters and water levels using IOT technology for various land use so that it will be useful for land management practices, increases resource utilization	IOT
12	TEMBMA3410	Arduino Employed Power Theft Controller and IOT based Load Controlling for Smart Energy Meter System The main objective of this project is to measure currents at load using Energy meter and if it increases threshold current then we say that power theft Occurred	Electrical
13	TEMBMA3411	Building a Smart City: A Conceptual Approach to Real-Time Urban Flood Control System The main objective of this project is to implement a conceptual approach for building a smart city with urban flood control system, utilizing technologies such as IOT and predictive modeling to effectively monitor and manage flood-prone areas, ensuring the safety of residents and minimizing infrastructure damage	Embedded applications
14	TEMBMA3412	Design and Implementation of IOT based Energy Efficient Smart Metering System for Domestic Applications The main objective of this project is to enable monitoring of energy consumption for optimal energy usage	Electrical
15	TEMBMA3413	Development of IOT Enabled Framework for LPG leakage detection and weight monitoring system The main objective of this project is to develop an IOT system for LPG leakage detection and weight monitoring system, utilizing sensors to detect gas leaks and monitor the weight of LPG cylinders, so that we can provide safety and alerts for appropriate action.	Embedded applications

		Design For Dust Cleaning Robot Using Embedded System	
16	TEMBMA3414	The main objective of this project is to design an embedded system for a dust cleaning robot, to improve cleanliness with reduced manual effort.	Robotics
17	TEMBMA3415	Women Safety Night Patrolling IOT RobotThe main objective of this project is to create an IOT-based robot for night patrolling for women's safety, incorporating sensors and communication to detect and respond to threats, which may solution for ensuring security in urban environments	Robotics
18	TEMBMA3416	Artificial Intelligence and IOT based detection of pesticide in organic fruits and vegetables The main objective of this project is to develop an IOT-based system to detect pesticide presence in organic fruits and vegetables through gas sensor to provide safety and quality of agricultural products	Embedded applications
19	TEMBMA3417	Automatic Industrial Fault Detection and IOT based Remote Monitoring The main objective of this project is to design an automatic industrial fault detection system with IOT-based remote monitoring capabilities, enabling identification of faults and monitoring of industrial processes for improved efficiency and maintenance.	Electrical
20	TEMBMA3418	Arduino based Smart Water Management System for Water Loss ReductionThe main objective of this project is to create an Arduino-based smart water management system to minimize water loss, incorporating sensors, and automated control for efficient water usage and leak detection	Embedded applications
21	TEMBMA3419	IOT Based Remote Surveillance For Animal Tracking Near Railway Tracks	Embedded applications

26	TEMBMA3424	Design and Implementation of a Google Assistant Home Automation System	WSN
25	TEMBMA3423	Robust Protection System The main objective of this project is to Implement protection system using smart IOT technology to empower women's safety, utilizing sensors, monitoring, and alert mechanisms for effective security and creating a safer environment	ЮТ
24	TEMBMA3422	The main objective of this project is to create vehicle security system that employs driver's license and fingerprint automation, utilizing biometric authentication technology to enhance vehicle security, prevent unauthorized access, and ensure the safety of vehicles and their owners Empowering Women's Safety with smart IOT Technology: A	Embedded applications
23	TEMBMA3421	Automatic Billing Trolley for an Enhanced Supermarket using RFIDThe main objective of this project is to develop an automatic billing trolley system for better operations using RFID technology, enabling automated billing for improving customer experienceA Novel Vehicle Security System using Driver's License and Fingerprint Automation	Embedded applications
22	TEMBMA3420	IOT Based Heart attack Detection and Heart Rate Monitoring System The main objective of this project is to detect heart beat values and uploading them to server for monitoring and generating alerts accordingly	Biomedical
		The main objective of this project is to develop an IOT-based remote surveillance system for animal tracking near railway tracks, using sensors, connectivity, and monitoring to detect and track animals for their safety, prevent accidents, and improve wildlife conservation	

c R O U P

		The main objective of this project is to design and implement a homes automation system that integrates with Google Assistant, enabling voice- controlled management of various devices like bulb and cpu fan	
		Automatic Panel Board with Protection System in Agri-Irrigation	
27	TEMBMA3425	The main objective of this project is to monitor agriculture parameters and to control respective motors from a server which improves operations of farmers	Embedded applications
		Smart City Waste Management System using IOT	
28	TEMBMA3426	The main objective of this project is to implement a smart city waste management system using IOT technology, integrating sensors and monitoring to optimize waste collection, reduce environmental impact, and promote sustainable waste management practices in urban areas.	ЮТ
29	TEMBMA3427	Monitoring Toxic Gases Using Nanotechnology and Wireless Sensor NetworksThe objective of this project is to develop a highly efficient system for monitoring toxic gases through wireless sensor networks, ensuring timely detection and mitigation of potential hazards	WSN
30	TEMBMA3428	Blind Navigation Support System using Raspberry Pi & YOLO The objective of this project is to create a Blind Navigation Support System utilizing Raspberry Pi and YOLO (You Only Look Once) technology, aiming to enhance the independence and safety of visually impaired individuals in indoor and outdoor environments.	Open CV
31	TEMBMA3429	Dam Management and Disaster Monitoring System using IOTThe objective of this project is to implement a Dam Management and Disaster Monitoring System using IOT (Internet of Things) technology, with the goal of ensuring efficient dam operation, early detection of potential disasters, and effective mitigation strategiesDesign and Implementation of a Smart Electric Fence Built on	ЮТ
32	TEMBMA3430	Solar with an Automatic Irrigation System The objective of this project is to develop and deploy a Smart Electric Fence powered by solar energy, equipped with an automatic irrigation system, to provide effective security against intruders while simultaneously ensuring sustainable irrigation for enhanced land management and resource utilization	Embedded Application s

33	TEMBMA3431	Development of an IOT Based Photovoltaic Monitoring System Using Hybrid Modeling The objective of this project is to create an IOT-based Photovoltaic Monitoring System that employs hybrid modeling techniques, aiming to enhance the efficiency and performance of photovoltaic systems through real-time data collection	ЮТ
34	TEMBMA3432	A Smart Tele-Healthcare System for Real-Time Health Monitoring and Remote Consultation The objective of this project is to design and implement a Smart Tele- Healthcare System that enables real-time health monitoring and remote consultation, utilizing advanced technologies to provide timely medical insights and expert advice for improved patient care and health outcomes	BIO MEDICAL
35	TEMBMA3433	Enhancement of Agriculture Productivity and Automation of Agriculture using IOT The main objective of this project is to enhance agricultural productivity and efficiency through the implementation of IOT-based automation, thereby revolutionizing traditional farming practices for optimal resource utilization and remote monitoring	ЮТ
36	TEMBMA3434	E-medicine: Health Care Monitoring System based on IoMT The main aim of this project is to establish an E-medicine healthcare monitoring system based on IOMT, aiming to revolutionize patient care through remote monitoring and data-driven medical insights	BIO MEDICAL
37	TEMBMA3435	Embedded based Smart Accident Pre-Alert and Prevention System with Machine Learning The main objective of this project is to develop an embedded-based smart accident pre-alert and prevention system using machine learning	Machine Learning
38	TEMBMA3436	Development of Automated Nutrient Composition Control for Fertigation System Using IOT Application The main objective of this project is to create an automated nutrient composition control for a fertigation system using IOT application	ЮТ
39	TEMBMA3437	Design of Drowsiness and Yawning Detection System The main objective of this project is to design a drowsiness and yawning detection system using OpenCV. This system will leverage OpenCV's computer vision capabilities to detect signs of driver fatigue, such as drowsiness and yawning, and trigger timely alerts	Open CV

40	TEMBMA3438	Cloud Controlled Home Safety and Management Solution for Equipment Automation via Internet The main objective of this project is to develop a cloud-controlled home safety and management solution that enables equipment automation through the Internet, enhancing convenience and security for homeowners	ЮТ
41	TEMBMA3439	Automatic Seat Identification System in Smart Transport using IOT and Image ProcessingThe main objective of this project is to create an automatic seat identification system in smart transport utilizing IOT and image processing techniques	ЮТ
42	TEMBMA3440	Automatic Fall Detection system for patients with Parkinson's disease The main objective of this project is to develop an automatic fall detection system for patients with Parkinson's disease	BIO MEDICAL
43	TEMBMA3441	AI Enabled Smart Campus for Health Safety and Monitoring The main objective of this project is to enhance health safety and monitoring within smart campus by implementing an accurate face mask detection system using an MLX90614 sensor and camera	Open CV
44	TEMBMA3442	Vehicle Anti-theft Face Recognition System, Speed Control and Obstacle Detection using Raspberry Pi The main objective of this project is to create a comprehensive vehicle anti-theft solution incorporating face recognition, speed control, and obstacle detection, all facilitated by Raspberry Pi technology	Embedded Application s
45	TEMBMA3443	Smart Weather Station using Development Boards for Environmental ApplicationsThe main objective of this project is to develop a smart weather station for environmental applications, utilizing development boards to collect and analyze weather data efficiently	Embedded Application s
46	TEMBMA3444	Toward Autonomous Farming—A Novel Scheme Based on Learning to Prediction and Optimization for Smart Greenhouse Environment ControlThe main objective of this project is to establish an innovative approach for autonomous farming by leveraging sensor data and	Embedded Application s

		optimization techniques to achieve intelligent control of the greenhouse environment in a smart and efficient manner.	
47	TEMBMA3445	Real Time Monitoring of Forest Fires and Wildfire Spread PredictionThe main objective of this project is to develop a system for monitoring of forest fires and wildfire spread using sensor-based technologies	Embedded Application s
48	TEMBMA3446	Optimised Home Electricity Management using Machine Learning The main objective of this project is to implement optimized home electricity management through sensor-based solutions. By utilizing sensors for data collection and analysis, the project aims to enhance energy efficiency and consumption patterns.	Electrical
49	TEMBMA3447	Milk Safe: A Hardware-Enabled Milk Quality Prediction using Machine LearningThe main objective of this project is to develop Milk Safe, a system that predicts milk quality through hardware-enabled data collection. By integrating sensors, the project aims to ensure accurate and timely assessment of milk quality.	Embedded Application s
50	TEMBMA3448	Design and Development of an Automated Hydroponics System based on IOT with Data Logging The main objective of this project is to design and develop an automated hydroponics system using IOT technology, incorporating data logging for efficient and controlled cultivation practices	ЮТ
51	TEMBMA3449	Development of Weight System Embedded with Tracking System using Arduino UNO Rev3 The main objective of this project is to develop a weight system embedded with a tracking system using Arduino UNO Rev3 for monitoring and management of objects' weight and location	Arduino
52	TEMBMA3450	Arduino based Wheelchair Fall Detection System using GPS and GSM Module The main objective of this project is to create an Arduino-based wheelchair fall detection system that utilizes GPS and a GSM module to immediately alert caregivers or authorities in the event of a fall,	Arduino

		ensuring prompt assistance for the user.	
		Arduino Uno Based Swarm Intelligence Robots	
53	TEMBMA3451	The main objective of this project is to develop swarm intelligence robots using Arduino Uno, enabling them to autonomously collaborate and solve complex tasks through decentralized communication and coordination.	Arduino
		A simple Design of Automatic Bag Valve Mask Ventilator using Arduino	
54	TEMBMA3452	The main objective of this project is to design a simple automatic Bag Valve Mask (BVM) ventilator using Arduino to provide controlled and consistent mechanical ventilation support to patients in need, particularly during emergency situations like the COVID-19 pandemic	Arduino
	TEMBMA3453	Implementation of Secure Smart Cart for Automatic Detection of Objects Using Arduino and RFID	
55		The main objective of this project is to implement a Secure Smart Cart for automatic detection of objects using Arduino and RFID technology, enhancing the efficiency and security of the shopping experience.	Arduino
		Handy Non-Invasive Blood Glucose Estimator using Arduino and Node MCU	
56	TEMBMA3454	The main objective of this project is to develop a non-invasive blood glucose estimator using Arduino and Node MCU, providing a convenient and accessible means for individuals to monitor their blood glucose levels without the need for invasive procedures	Arduino
		Smart Pain Relief Device for Varicose Veins using IOT & Arduino	
57	TEMBMA3455	The main objective of this project is to create a smart pain relief device for varicose veins using IOT and Arduino, offering patients an intelligent and effective solution for managing pain and discomfort associated with varicose veins through remote monitoring	Arduino
		Arduino Based Vehicle Overload Detection System for Prevention of Accidents	
58	TEMBMA3456	The main objective of this project is to develop an Arduino-based vehicle overload detection system aimed at preventing accidents by monitoring and alerting against vehicle overloading, thereby enhancing road safety	Arduino

takeoff_{edu}®

0

R

G

U

P

59	TEMBMA3457	A Robotics-Based Surveillance System for Livestock Wellbeing and Early Disease Detection in Poultry FarmsThe main objective of this project is to implement a robotics-based surveillance system in poultry farms to ensure the wellbeing of livestock and enable early detection of diseases, thereby improving the overall health and productivity of the poultry farm.	Robotics
60	TEMBMA3459	IOT Based Bio Shed for Agricultural Purpose The main objective of this project is to establish an IOT-based bio shed for agricultural purposes, integrating technology to optimize and monitor various aspects of agricultural operations, ultimately enhancing crop yield and sustainability.	ЮТ
61	TEMBMA3460	IOT Framework for Real Time Weather Monitoring using Machine Learning Techniques The main objective of this project is to develop an IOT framework for real-time weather monitoring that incorporates machine learning techniques, enabling accurate prediction and analysis of weather conditions for various applications and industries.	IOT
62	TEMBMA3461	Design and Implementation of an Interoperable IOT Based Health Monitoring System for Diabetes The main objective of this project is to design and implement an interoperable IOT-based health monitoring system for diabetes, allowing seamless data exchange and remote monitoring of diabetic patients to enhance their overall healthcare management	BIO MEDICAL
63	TEMBMA3462	Smart Automated Kitchen System using Internet of Things The main objective of this project is to create a smart automated kitchen system using the Internet of Things (IOT) to optimize and enhance various kitchen processes, making cooking and food preparation more efficient, convenient, and connected.	ЮТ
64	TEMBMA3463	Intelligent Solar Based Climate Adjustable E-Uniform for Soldiers The main objective of this project is to develop an intelligent solar- based climate-adjustable electronic uniform for soldiers, offering enhanced comfort and adaptability to varying environmental conditions, ensuring the well-being and performance of military	Arduino

		personnel	
		Agrobot: Agricultural Robot using IOT and Machine Learning (ML)	
65	TEMBMA3464	The main objective of this project is to create an Agrobot, an agricultural robot, utilizing IOT and Machine Learning (ML) technologies to revolutionize farming practices by automating tasks, optimizing resource utilization, and improving crop management	Robotics
		Surveillance System for Real-Time High-Precision Recognition of Criminal Faces From Wild Videos	
66	TEMBMA3465	The main objective of this project is to develop a surveillance system capable of real-time high-precision recognition of criminal faces, enhancing law enforcement efforts in identifying and tracking individuals of interest for public safety and security	OpenCV
		IOT Based Contactless Visitor Approval and Parcel Sanitization System For COVID -19	
67	TEMBMA3466	The main objective of this project is to implement an IOT-based contactless visitor approval and parcel sanitization system for COVID- 19, ensuring a safer and hygienic environment by minimizing physical contact and reducing the risk of viral transmission.	ЮТ
		SWAP Smart Water Protocol for the Irrigation of Urban Gardens in Smart Cities	
68	TEMBMA3467	The main objective of the SWAP (Smart Water Protocol) project is to develop an advanced system for the efficient irrigation of urban gardens in smart cities, leveraging smart technologies and data-driven approaches to optimize water usage and promote sustainable urban agriculture practices.	ЮТ
		Distributed subway station safety detection system based on Raspberry Pi	
69	TEMBMA3468	The main objective of this project is to create a distributed subway station safety detection system based on Raspberry Pi, enhancing passenger safety and security by continuously monitoring critical aspects of subway stations and promptly detecting potential safety hazards or security breaches.	Raspberry Pi
70	TEMBMA3469	Reading Aid and Translator with Raspberry Pi for Blind people	Raspberry

			1
		The main objective of this project is to design and implement a reading aid and translator using Raspberry Pi to assist blind individuals in reading printed text and translating it into accessible formats, thereby promoting greater independence and accessibility in daily life	Pi
71	TEMBMA3470	Advanced Monitoring System for Streetlights with Theft Identification Features (AMoSSTIF) Using Raspberry Pi The main objective of the Advanced Monitoring System for Streetlights with Theft Identification Features (AMoSSTIF) project is to develop a comprehensive streetlight monitoring system based on Raspberry Pi, designed to efficiently manage and monitor streetlights while also incorporating theft identification features to enhance security and reduce maintenance costs.	Raspberry Pi
72	TEMBMA3471	Embedded System based Independent Scientist Satellite Payload The main objective of this project is to create an embedded system- based independent scientist satellite payload, enabling scientific research and data collection in space with a focus on autonomy, versatility, and accessibility for independent scientists and researchers.	Raspberry Pi
73	TEMBMA3472	IOT Enabled Innovative Accident Detection and Rescue System The main objective of this project is to design and implement an IOT- enabled innovative accident detection and rescue system, aimed at improving the promptness and efficiency of accident detection and response, ultimately enhancing overall safety and reducing the severity of incidents.	ΙΟΤ
74	TEMBMA3473	Prevention of Road Accidents by Interconnecting Vehicles using LiFi and LoRaWAN Technologies The main objective of this project is to prevent road accidents by interconnecting vehicles through the integration of LiFi and LoRaWAN technologies, facilitating real-time communication and data exchange between vehicles to enhance road safety and reduce accidents.	WSN
75	TEMBMA3474	Safety Grills to Avoid Railway Platform Accident The main objective of the project is to install safety grills on railway platforms to prevent accidents, ensuring the safety of passengers by creating a protective barrier that reduces the risk of falling or crossing tracks inadvertently	Emb. Application s

76	TEMBMA3475	 Hybrid Model for vehicle overload detection system using Arduino sensors The main objective of this project is to develop a hybrid model for a vehicle overload detection system using Arduino sensors, combining multiple sensor technologies to accurately identify and alert against overloading in vehicles, thereby enhancing road safety and compliance with weight regulations 	
77	TEMBMA3476	GPS GSM based School Bus Boarding Deboarding and Location Notifying System The main objective of this project is to implement a GPS/GSM-based system for school buses that tracks and notifies parents and school authorities about the boarding, deboarding, and real-time location of students, ensuring their safety during school transportation.	WSN
78	TEMBMA3477	 IOT - Based ATM Pin Entry by Random Word Generator Using Design Thinking Framework The main objective of this project is to design an IOT-based ATM pin entry system that employs a random word generator, utilizing the Design Thinking framework to enhance security and user experience during ATM transactions 	
79	TEMBMA3478 Mudslide Disaster Monitoring and Early Warning System Based on ESP32 TEMBMA3478 The main objective of this project is to create a mudslide disaster monitoring and early warning system based on ESP32, providing real-time data collection and timely alerts to help mitigate the risks and impact of mudslides in vulnerable areas.		Node MCU
80	TEMBMA3479	Cloud based Intelligent Accident Proof Helmet and Detect State of Intoxication The main objective of this project is to develop a cloud-based intelligent accident-proof helmet equipped with sensors and technology to not only enhance safety for the wearer but also detect their state of intoxication, thereby reducing the risk of accidents due to impaired judgment or coordination.	
81	TEMBMA3480	0 Robotic Accident Prevention and Alert System for Visually 1 Impaired	

		The main objective of this project is to create a robotic accident prevention and alert system tailored for visually impaired individuals, providing them with real-time assistance and warnings to navigate their environment safely and independently.	
		A Wireless Multifunctional Structural Health Monitoring System	
82	TEMBMA3481	The main objective of this project is to establish a wireless multifunctional structural health monitoring system designed to continuously assess the condition and integrity of structures, ensuring early detection of potential issues and enhancing safety and maintenance practices.	WSN
		IOT enabled Vehicles Auto Kids Recognition System	
83	TEMBMA3482	The main objective of this project is to develop an IOT-enabled auto- kids recognition system for vehicles, enhancing child safety by ensuring that no child is left unattended inside a vehicle through real- time monitoring and alerts	ЮТ
		Biometric and RFID Passive Tag based Student Identification	
84	TEMBMA3483	System for Secure Attendance Management The main objective of this project is to implement a secure attendance management system for students using biometric and RFID passive tag technology, ensuring accurate and reliable student identification and attendance tracking in educational institutions	WSN
		Design and Analysis Performance of IOT-Based Water Quality	
85	TEMBMA3484	Monitoring System using LoRa Technology The main objective of this project is to design and analyze the performance of an IOT-based water quality monitoring system using LoRa technology, enabling real-time data collection and assessment of water quality parameters to ensure the safety and sustainability of water resources.	WSN
		IOT Based Anti-Theft Flooring Mat system Using Raspberry PI	
86	TEMBMA3485	The main objective of this project is to create an IOT-based anti-theft flooring mat system using Raspberry Pi, designed to detect unauthorized access or tampering and provide security alerts to prevent theft or intrusion	Raspberry Pi
87	TEMBMA3486	Finger Print & Pascode Based Anti-Theft Vehicle System	Emb. Application

		The main chiesting of this musications develop a financiation d	S
		The main objective of this project is to develop a fingerprint and passcode-based anti-theft vehicle system, enhancing vehicle security	5
		by requiring biometric and secure code authentication for ignition and	
		access, thereby preventing unauthorized use or theft	
		Ale On alter Marshare Contant Hairs - IOT And Marshins I a series	
		Air Quality Monitor System Using IOT And Machine Learning	
		The main objective of this project is to create an air quality monitoring	
88	TEMBMA3487	system using IOT and machine learning, allowing real-time data	IOT
		collection and analysis to provide insights into air quality and	
		potentially forecast pollution levels for improved public health and	
		environmental awareness.	
		Network Security Surveillance System for Jewelry Shop	
		The main objective of this project is to establish a network security	Emb.
89	TEMBMA3488	surveillance system specifically designed for jewelry shops, providing	Application
		comprehensive security measures and real-time monitoring to	s
		safeguard valuable assets and ensure the safety of both customers and	
		staff.	
		A system of IOT Devices to prevent under-loading overloading of	
		Railway wagons.	
		The main objective of this project is to implement a system of IOT	
90	TEMBMA3489	devices that prevents the under-loading and overloading of railway	IOT
		wagons, thereby ensuring safe and efficient cargo transportation and	
		preventing potential accidents or damage to the railway	
		infrastructure.	
		Object Detection System using Arduino for Military Application	
91	TEMBMA3490	The main objective of this project is to implement object detection that will	Embedded
-	I EMDMA3490	enhance military application this project will efficiently calculate the	Application
		distance between objects and therefore contribute in mission's success in	
		the battlefield effectively. Smart Transformer - An Analysis of Recent Technologies for	
		Monitoring Transformer	
92	TEMBMA3491	The main objective of this project is to implement a better way monitor the	Electrical
		transformer. This project will able to monitor the different parameter of a	
		transformer and upload them to webserver for webserver and remote	
		monitoring. Epilepsy Detection Using Embedded Machine Learning	
93	TEMBMA3492	F F	Machine Learning
		The objective is to create a reliable system that can analyze physiological	Louining
		The objective is to create a remaine system that can analyze physiological	

		signals indicative of epileptic seizures. The embedded nature of the system allows for continuous monitoring, with the goal of providing timely alerts or interventions to enhance patient safety and medical response in epilepsy management.	
94	TEMBMA3493	IOT Based Fish Pond Monitoring System to Enhance Its Productivity This innovative project helps to monitor different parameters in a fish pond and based update the data to webserver for remote monitoring and analysis which will help to understand the water better which leads to good productivity.	ЮТ
		Arduino UNO Based OTP Lock for Integrated Home Security System	
95	TEMBMA3494	Design and implement an Arduino UNO-based OTP (One-Time Password) lock as a key component of an Integrated Home Security System. The system should provide a secure and user-friendly mechanism for access control, utilizing OTP technology to ensure each access attempt is unique Implementation of Bluetooth Based Cargobot Using Controlled	Embedded Application
96	TEMBMA3495	Arduino Robocar Utilizing Bluetooth communication, the system should allow users to wirelessly control the Robocar's movements, demonstrating an innovative and practical application of robotics in logistics.	Robotics
97	TEMBMA3496	Sensor-based espial of potholes and humps on roads with instant notification alert using IOT The main idea of this project is to create a sensor-based system for the detection of potholes and humps on roads using IOT technology. The project aims to deploy sensors capable of identifying road irregularities, with an integrated IOT system for instant notification alerts. The objective is to improve road safety and maintenance by providing real-time information to relevant authorities, enabling prompt intervention and enhancing the overall quality of road infrastructure. Integrated Environmental Monitoring and Disease Detection Using	IOT
98	TEMBMA3497	Internet of Things Due to the integration of different sensor the system able to monitor the environment effectively and based on the pollutants the system will able to detect the diseases and upload the sensor data to webserver for remote monitoring and analysis.	ЮТ
99	TEMBMA3498	Smart Wearable Device to Prevent Accidents Caused by Medical	
100	TEMBMA3499	driving. Evaluation of Suitability of Low-Cost Gas Sensors for Monitoring Indoor and Outdoor Urban Areas This project is designed to measure the air quality in the environment by using the low cost sensor this system is suitable to better environment monitoring.	Embedded Application

	Design and implementation of attender robot Using raspberry pi	
101		Embedded
101	"Utilizing Raspberry Pi, we design and implement an attender robot,	Application
	enhancing efficiency and reducing human intervention in tasks such as	
	delivery, surveillance, or assistance."	
	Plant Disease Detection Using Image processing and Drone	Embedded
102		+ matlab
	Simply the camera will able take the picture and then send them to	1 matrao
	mail for further processing with mat lab	
	RFID based smart trolley for automatic billing system	
103		Embedded
105	"Developing an RFID-based smart trolley enables an automatic billing	Application
	system, simplifying shopping experiences by seamlessly tracking items	
	and generating bills without manual intervention."	
	E-bike with security system authentication with theft alarm and	
	vehicle detection	\mathbf{T} and \mathbf{A} defined
104		Embedded
	"Crafting an E-bike model prototype integrated with security	Application
	authentication, , ensuring enhanced safety and theft prevention for	
	riders."	
	Arduino based Thermoelectric Energy Generator	
10.5		Renewable
105	"In this Arduino-based project, we utilize thermoelectric energy	energy
	generation alongside solar panels to power LEDs, demonstrating	
	sustainable energy utilization for lighting purposes."	
	IOT based automated tomato sorting machine	
106	"Creating an IOT-based automated tomato sorting machine that	IOT
	distinguishes between green and red tomatoes, streamlining	
	agricultural processes for efficient sorting and packaging."	
	SMART BAGGAGE TRACKER	
		Embedded
107	"Introducing a Smart Baggage Tracker leveraging GPS and IOT	Application
	technologies, offering location updates and notifications, ensuring	ripplication
	peace of mind for travelers and efficient baggage management."	
	Phase angle measurement circuit or a Power Factor	
	measurement circuit.	
108	incasurement encure.	Electrical
100	"Designing a phase angle measurement circuit or a power factor	Hardware
	measurement circuit using the PZEM energy monitor, enabling	
	accurate assessment of electrical system efficiency and performance."	
	Automatic unthorized parking detector with SMS alert	Emperature 1
109	"Developing on automatic upouth origod neulting detector courier of	Embedded
	"Developing an automatic unauthorized parking detector equipped	Application
	with SMS alert functionality, ensuring efficient management of parking	
	spaces and prompt notification of unauthorized vehicle presence."	

	Underground fault detector by using Arduino Uno	
110	"Implementing an underground fault detector with Arduino Uno, utilizing 9 switches to represent 3 locations across three phases, enabling precise identification and localization of faults in electrical distribution systems."	
111	Advancing Workplace Safety with IOT-Enabled Industrial Monitoring This project focuses on enhancing industrial safety through an advanced Industrial Safety System utilizing Internet of Things (IOT) technology, particularly in high-risk industries such as petroleum, chemicals, and oil.	
112	Battery Consumption Optimization in Electric Vehicles using Gyroscope SensorIn order for an electric car to function, batteries are essential. The battery's use is a significant issue. Optimized battery power usage is the main topic of this project. This is achieved by efficiently providing power while considering the various terrains the vehicle travels.	
113	Implementation of RemRover: A Remotely Controlled Rover Built using IOT and Web SocketsThis project describes the development of RemRover, an IOT-based robotic rover designed for environmental monitoring and remote control. The rover is built using a Raspberry Pi microcontroller and is equipped with several sensors	
114	IOT-Based Automatic Bed Vacancy Detection in Hospital The development of an efficient bed availability tracking system is crucial, particularly in India where hospital bed shortages are a significant issue.	
115	IOT Based Electrical Vehicle Battery Management System with Charge Monitor and Fire ProtectionThis project presents an Arduino-based Electrical Vehicle Battery Management System (EV-BMS) integrated with IOT capabilities for enhanced monitoring and safety features.	
116	IOT-Enhanced Hostel Inventory Management System for Seamless Resource Monitoring and Control The Hostel Inventory Management System (HIMS) is a sophisticated solution designed to streamline and optimize	

inventory management in hostel facilities.	
IOT-Enhanced Transport and Monitoring of Medicine Using Sensors, MQTT, and Secure Short Message Service	
This project procents on offective implementation of	
IOT (Internet of Things) for monitoring the transportation of	
Raspberry Pi-Based Driver Drowsiness Detection	
The project focuses on developing an intelligent system using raspberry pi to detect drowsiness in drivers and take appropriate	
Raspberry Pi	
The project outlines a comprehensive approach to sewage water monitoring and filtering through an Arduino-based system.	
Smart Water Flow and Pipeline Leakage Detection using IOT and Arduino IINO	
Internet of Things (IOT)-based leak detection system using the Arduino IDA open source	
	IOT-Enhanced Transport and Monitoring of Medicine Using Sensors, MQTT, and Secure Short Message ServiceThis project presents an effective implementation of IOT (Internet of Things) for monitoring the transportation of medicines and vaccines, along with temperature control facilitated through mobile applications and sensor networks.Raspberry Pi-Based Driver Drowsiness DetectionThe project focuses on developing an intelligent system using raspberry pi to detect drowsiness in drivers and take appropriate actions to prevent accidents.Sewage Water Monitoring and Filtering using Raspberry PiThe project outlines a comprehensive approach to sewage water monitoring and filtering through an Arduino-based system.Smart Water Flow and Pipeline Leakage Detection using IOT and Arduino UNOThis project study intends to create an Internet of Things (IOT)-based leak detection

takeoff_{edu}®

0

U

G

R

PROJECT SUPPORTS FOR STUDENTS:

- ✤ PROJECT ABSTRACT
- ✤ PROJECT IEEE BASE PAPER/ REFERENCE PAPER
- ✤ PROJECT PRESENTATION IN PPT FORMAT
- ✤ PROJECT REVIEW ASSISTANCE FOR VIVA
- ✤ PROJECT DIAGRAMS
- ✤ PROJECT SOURCE CODE
- ✤ PROJECT REPORT
- ✤ PROJECT SCREEN SHOTS
- PROJECT DEMO
- ✤ PROJECT EXPLANATION
- ✤ PLAGARISM DOCUMENTATION
- ✤ INTERNATIONAL JOURNAL/CONFERENCE PUBLISHING
- ✤ PROJECT ACCEPTANCE LETTER
- ✤ PROJECT COMPLETION CERTIFICATE

LATEST MATLAB ACADEMIC LIVE PROJECTS 2023-2024

S. No	Project Code	Title	Domain
1	TMMAIP413	Combined Use of a Bilateral and Median Filter to Suppress Gaussian Noise in Images	Image Processing
		Objective : This project aims to combine the strengths of bilateral and median filtering algorithms to achieve superior noise reduction in images corrupted by Gaussian noise.	
2	TMMAAI256	Detection of Corn Leaves Nutrient Deficiency Using Support Vector Machine (SVM)	Image Processing/Artificial Intelligence
		Objective : This project aims to develop a robust and accurate system for identifying nutrient deficiencies in corn plants through the utilization of machine learning techniques, specifically Support Vector Machine (SVM).	
3	TMMAAI257	LogoBasedAmphetaminesclassificationObjective:The objective of the "Logo BasedAmphetaminesClassification" project is todevelopanadvancedimageclassificationsystem that utilizes logo recognition techniquestoaccuratelyclassifyanddifferentiatevarioustypesofamphetaminesubstancesbasedon	Image Processing/Artificial Intelligence
4	TMMAAI263	their visual characteristics Glucose Content Analysis using Image Processing and Machine Learning Objective : The project aims to create a non- invasive and automated method for glucose	Image Processing/Artificial Intelligence

		level assessment, reducing the dependency on traditional invasive blood/urine tests.	
5	TMMAIP412	Object Segmentation Based on the Integration of Adaptive K-means and GrabCut Algorithm Objective: we propose a method of object segmentation based on hybrid segmentation	Image Processing
		method means combine use of Adaptive k- means clustering and GrabCut Algorithm	
6	TMMAAI264	American Sign Language Recognition Based on Machine Learning and Neural Network	Image Processing/Artificial Intelligence
		Objective : we propose a method of American Sign language Recognition based on different algorithms (machine learning and Deep learning) and comparison their Accuracy, precision, f1-score	
7	TMMAAI265	Blood Cells Classification Using Deep Learning Technique Objective: we propose a method of Blood Cells classification Using per-processing, AlexNet Convolutional Neural Network, Classification and final Result	Image Processing/Artificial Intelligence
8	TMMAIP414	K-means and Morphological Approach on Image Segmentation for Fish Detection Objective: The primary objective of employing K-means clustering and morphological approach in the context of image segmentation for fish detection is to develop an effective and automated system for accurately identifying and isolating fish objects within underwater images	Image processing

9	TMMAIP415	AnalysisofVariousImageSegmentationTechniquesonRetinalOCT ImagesObjective:The primary objective of this projectis to systematically evaluate and comparedifferentimagesegmentationdifferentimagesegmentationappliedtoRetinalOpticalCoherenceTomography (OCT)images.This analysis aimstoenhanceourunderstandingof	Image processing
		performance and suitability of various segmentation methods for accurately delineating retinal structures and anomalies within OCT images.	
10	TMMAAI266	Diagnosis of Malaria using Machine Learning Models	Image Processing/Artificial Intelligence
		Objective : The primary objective of this project is to develop and deploy a robust and accurate machine learning-based system for the diagnosis of Malaria. Malaria is a life- threatening disease caused by the Plasmodium parasite, and early and accurate diagnosis is critical for effective treatment and control.	
11	TMMAAI267	Betta Fish Image Identification using Feature Extraction GLCM and K-Nearest Neighbour Classification	Image Processing/Artificial Intelligence
		Objective : The primary objective of this project is to develop a robust and accurate image identification system for Betta fish species using advanced computer vision techniques, specifically feature extraction based on Gray- Level Co-occurrence Matrix (GLCM) and classification through the K-Nearest Neighbour (K-NN) algorithm.	

TMMAAI268	Dried Fish Classification Using Deep Learning	Image Processing/Artificial Intelligence
	Objective : The primary objective of this project is to develop a deep learning-based system for the automated classification of dried fish products. Specifically, the project aims to create a robust and accurate model capable of categorizing different types and qualities of dried fish based on visual attributes.	
TMMAIP416	Road Extraction from Satellite Images Using Maximum Entropy Threshold Method	Image processing
	Objective : The primary objective of this project is to develop an automated road extraction system that utilizes the Maximum Entropy Threshold Method (METM) for the analysis of satellite imagery. This system aims to accurately identify and extract road networks from satellite images, providing valuable geospatial data for various applications such as urban planning, transportation management, and environmental monitoring.	
TMMAIP417	Design and Implementation of a Cloud Particle Shape Recognition Algorithm Based on MATLAB Objective: The primary objective of this project is to develop a robust and efficient cloud particle shape recognition algorithm using MATLAB. This algorithm will analyse images or data of cloud particles and classify them based on their shapes, contributing to a deeper understanding of atmospheric processes and aiding in	Image Processing/Artificial Intelligence
	TMMAIP416	Learning Objective: The primary objective of this project is to develop a deep learning-based system for the automated classification of dried fish products. Specifically, the project aims to create a robust and accurate model capable of categorizing different types and qualities of dried fish based on visual attributes. TMMAIP416 Road Extraction from Satellite Images Using Maximum Entropy Threshold Method Objective: The primary objective of this project is to develop an automated road extraction system that utilizes the Maximum Entropy Threshold Method (METM) for the analysis of satellite imagery. This system aims to accurately identify and extract road networks from satellite images, providing valuable geospatial data for various applications such as urban planning, transportation management, and environmental monitoring. TMMAIP417 Design and Implementation of a Cloud Particle Shape Recognition Algorithm Based on MATLAB Objective: The primary objective of this project is to develop a robust and efficient cloud particle shape recognition algorithm using MATLAB. This algorithm will analyse images or data of cloud particles and classify them based on their shapes, contributing to a deeper understanding

15	TMMAAI269	Chest X-ray Imaging System for Early Detection of Tuberculosis	Image Processing/Artificial Intelligence
		Objective : The primary objective of the "Chest X-ray Imaging System for Early Detection of Tuberculosis" project is to develop an innovative and robust medical imaging system that leverages chest X-ray technology to facilitate the early and accurate detection of tuberculosis (TB).	
16	TMMAAI258	Facial Expression Image based Emotion Detection using Convolutional Neural Network	Image Processing/Artificial Intelligence
		Objective : The goal is to create a model that can automatically recognize and classify human emotions from facial images into predefined categories such as happiness, sadness, anger, surprise, fear, and disgust.	
17	TMMAAI259	Machine Learning Approach for Detecting Liver Tumours in CT images using the Gray Level Co-Occurrence Metrix	Image Processing/Artificial Intelligence
		Objective : This project aims to address critical healthcare challenges by leveraging machine learning techniques, specifically the Gray Level Co-Occurrence Matrix (GLCM), to enhance the accuracy and efficiency of liver tumour diagnosis.	
18	TMMAAI260	Leaf Diseases Prediction Pest Detection and Pesticides Recommendation using Deep Learning Techniques	Image Processing/Artificial Intelligence
		Objective : The primary objective of this project is to develop a comprehensive and intelligent system that leverages deep learning techniques	

	1		T
		to address critical challenges in agriculture, specifically related to leaf diseases, pest detection, and the recommendation of suitable pesticides. The project aims to revolutionize agricultural practices by providing timely and accurate support to farmers and agricultural stakeholders	
19	TMMAAI261	CNN Based Study of Improvised Food Image Classification Objective: This project aims to contribute to the field of computer vision and food image classification, specifically focusing on the challenging task of categorizing improvised or	Image Processing/Artificial Intelligence
		homemade dishes using deep learning techniques. The results of this study can have practical applications in recipe recommendation, dietary analysis, and culinary innovation.	
20	TMMAAI262	HydrophobicityClassificationofComposite Insulators Based on ImageEnhancement and Deep LearningObjective: The primary objective of the projecttitled"HydrophobicityClassificationofCompositeInsulatorsBasedonImageEnhancement and Deep Learning" is to developanadvancedandautomatedsystemforassessingthehydrophobicitystatusof	Image Processing/Artificial Intelligence
		composite insulators used in electrical power transmission and distribution networks.	

		processing technique for the accurate extraction and enhancement of Electrocardiogram (ECG) signals	
22	TMMASP169	A Novel Approach to Speech Signal Segmentation Based on Time- Frequency Analysis Objective: The main objective is to segment a speech signal on the basis of Time and Frequency analysis	Signal Processing
23	TMMASP170	FeatureextractionandanalysisofspeechsignalbasedonfractionalFourier transformObjective:Toanalyseandextract features of aspeechsignalusingfractionalFourier transform	Signal Processing
24	TMMASP171	Speech Signal Denoising Algorithm and Simulation Based on Wavelet Threshold Objective: The project aims to address the critical issue of enhancing the quality of speech signals corrupted by various types of noise, such as background noise, interference, or distortions, to improve the overall intelligibility and usability of the audio data.	Signal Processing
25	TMMASP172	Noise Reduction and Speech Enhancement Using Wiener Filter Objective: The primary objective of this project is to develop and implement a noise reduction and speech enhancement system based on the Wiener filter algorithm. The project aims to enhance the quality of audio recordings in noisy environments, making them clearer and more intelligible.	Signal Processing

30	TMMACO91	Channel Estimation in Intelligent Reflecting Surfaces for 5G and Beyond	Communication
29	TMMAWS91	ImprovedLocalizationbyRoutePositioningbasedNodeLocationDetectionontheWirelessSensorNetworkNetworkNetworkNetworkObjective:The project aims to address the limitations of existing localization methods and provide a more reliable solution for determining the spatial coordinates of individual nodes 	Communication
		using Optimized Swarm Intelligence Objective: this project aims to contribute to the security and reliability of Wireless Sensor Networks, making them more resilient to malicious data injection attacks while maintaining efficient resource utilization through optimized swarm intelligence techniques.	
28	TMMAWS90	Malicious Data Injection Detection and Prediction in Wireless Sensor Network	Communication
27	TMMAWS89	Detection of Falsified Selfish Node with Optimized Trust Computation Model in Chimp — AODV Based WSN Objective: To detect the selfish node using Optimized Trust Computation Model in WSN	Communication
		Neuro Muscular EMG Signal Objective: EMG signals are essential in various fields, including healthcare, robotics, and human-computer interaction. This project aims to contribute to the understanding and utilization of EMG data for a wide range of applications.	
26	TMMASP173	Implementation of Feature Extraction of	Signal Processing

33	TMMAAI279	Breast Cancer Recognizable Proof, Classification and Discovery Utilizing Neural Networks	Image Processing/Artificial Intelligence
		Objective: The overarching objective of this project is to develop a robust Multidefect Detection Tool for Large-Scale Photovoltaic (PV) Plants that combines advanced image processing techniques, machine learning algorithms, and computer vision methodologies. The primary focus will be on the segmentation and classification of defects within PV plant imagery to enhance the overall performance, reliability, and maintenance efficiency of solar energy systems.	
32	TMMAAI277	Multidefect Detection Tool for Large- Scale PV Plants: Segmentation and Classification	Image Processing/Artificial Intelligence
31	TMMAAI271	AnAutomatedFishSpeciesClassificationSystemUsingImprovedAlexnetModelImprovedObjective:The objective of the "AutomatedFishSpeciesClassificationSystem:project is todeveloparobustandaccuratelearning-basedsystemthatcanautomaticallyidentifyandclassifydifferentspeciesoffromimagesorvideofootage.	Image Processing/Artificial Intelligence
		Objective : The primary objective of this project is to develop advanced channel estimation techniques tailored to the unique capabilities and challenges posed by Intelligent Reflecting Surfaces (IRS) in the context of 5G and future generations of wireless communication systems.	

		Objective: The primary objective of the "Breast Cancer Recognizable Proof, Classification, and Discovery Utilizing Neural Networks" project is to develop a robust and efficient system for the early detection, classification, and exploration of breast cancer utilizing advanced neural network techniques.	
34	TMMAAI282	Fake Currency Detection with Machine Learning Algorithm and Image Processing	Image Processing/Artificial Intelligence
		Objective: This research aims to distinguish genuine and counterfeit Indian paper currency using image processing techniques. A dataset of original and fake notes is analysed with Support Vector Machine (SVM) for classification, achieving high accuracy.	
35	TMMAAI283	UNDERWATER IMAGE ENHANCEMENT USING LAPLACE DECOMPOSITION AND YOLOV2 OBJECT DETECTION	Image Processing/Artificial Intelligence
		Objective: Underwater imaging faces issues like light attenuation and color distortion. This paper introduces a technique using Laplace decomposition to enhance images, followed by YOLOv2 for object detection, improving clarity and context.	
36	TMMAAI284	BLOOD GROUP DETECTION USING IMAGE PROCESSING & MACHINE LEARNING	Image Processing/Artificial Intelligence
		Objective: This paper introduces a non- invasive method for blood group determination. It combines image processing and machine learning to classify blood samples by analysing red blood cells mixed with specific antibodies.	

takeoffedu [©] R O U P

37	TMMAAI285	ADAPTIVEFLAMEBASEDSEGMENTATION AND CLASSIFICATIONFOR BONE CANCER DETECTIONObjective:Bone cancer, a rare malignancy,necessitates timely detection for improvedoutcomes.AFLAME, an adaptive fuzzyclustering method, introduces a strategy foridentifying bone cancer.SVM classifiers aidclassification, promising enhanced diagnosisand treatment planning.	Image Processing/Artificial Intelligence
38	TMMAAI275	CARD-LESS ATM USING FINGERPRINT AND FACE RECOGNITION TECHNIQUESObjective: The study develops a card-less ATM security system using CNN-based fingerprint 	Image Processing/Artificial Intelligence
39	TMMAAI286	Kidney Stone Detection Using Image Processing and Convolutional Neural Networks Objective: This research aims to develop a kidney stone detection system using image processing, Convolutional Neural Networks (CNNs) with VGG16 architecture, and deep learning techniques, ensuring reliable automated diagnostics.	Image Processing/Artificial Intelligence
40	TMMAIP420	GLAUCOMA DETECTION USING IMAGE PROCESSING WITH MATLAB SOFTWARE	Image Processing/Artificial Intelligence

		Objective: This research utilizes MATLAB for enhancing glaucoma detection from fundus images, proposing a robust image processing framework involving preprocessing, feature extraction, and classification algorithms for accurate diagnosis, aiming to improve patient outcomes.	
41	TMMAAI287	Fingerprint Identification with fusion of Gabor features using CNN classifier	Image Processing/Artificial Intelligence
		Objective: This study integrates Gabor features with a Convolutional Neural Network (CNN) classifier to improve fingerprint identification. It employs preprocessing, PCA for dimensionality reduction, and CNN training for classifying fingerprint patterns, focusing on enhanced biometric accuracy.	
42	TMMAAI288	Bone Cancer Identification and Separation Using K - Means and KNN Classifiers	Image Processing/Artificial Intelligence
		Objective: This study integrates K-Means and KNN classifiers to identify bone cancer stages in CT scans. It applies advanced pre- processing, feature extraction via GLCM, and multi-stage classification, ensuring robust and accurate results.	
43	TMMAAI289	A Biometric-Finger Vein Authentication System for Security Purpose using Deep Learning Technique	Image Processing/Artificial Intelligence
		Objective: This study introduces a biometric finger vein authentication system, utilizing deep learning for security. It processes grayscale images through filtering, edge detection, segmentation, and CNN-based feature matching to confirm user identity.	

takeoffedu [©] R O U P

44	TMMAAI290	DEEPLEARNINGBASEDCLASSIFICATION OF BONE TUMORSUSING IMAGE SEGMENTATIONObjective: This paper addresses automatedbonecancerdetection,employingdeeplearningalgorithmson histologicalimagesforChondrosarcoma,Ewingsarcoma,aimingtoimproveearlydetectionandclassificationaccuracy.	Image Processing/Artificial Intelligence
45	TMMAAI291	DetectingBrainTumorbyUsingMachineLearningandImageProcessingTechniquesObjective:ThisstudyexploresMachineImageprocessingto detect brainlearningandimageprocessing to detect braintumors.Itinvolvespreprocessing,segmentation,morphologicaloperations,GLCM-basedfeatureextraction,andclassificationtodistinguishbetweenmeningioma,pituitary,andnormalimages.images.imageimage	Image Processing/Artificial Intelligence
46	TMMAAI292	CLASSIFICATION OF SATELLITE IMAGES WITH DEEP CONVOLUTIONAL NEURAL NETWORKS AND ITS EFFECT ON ARCHITECTURE Objective: This study investigates Deep Convolutional Neural Networks (DCNNs) for satellite image classification. It explores architectural choices, preprocessing techniques, and evaluation metrics, optimizing classification for environmental monitoring, urban planning, and disaster management.	Image Processing/Artificial Intelligence

47	TMMAAI266	DIAGNOSIS OF MALARIA USING MACHINE LEARNING MODELS	Image Processing/Artificial Intelligence
		Objective : Develop a deep learning model for automated malaria diagnosis using Convolutional Neural Networks (CNNs). The model aims to classify blood cell images into Infected and Uninfected categories, enhancing early detection and improving healthcare outcomes.	
48	TMMAAI293	Rail Track Defects Detection Using Convolution Neural Network	Image Processing/Artificial Intelligence
		Objective : Using Convolutional Neural Networks (CNNs), this study aims to detect rail track defects, focusing on data preprocessing, feature extraction, and model training. After optimizing performance, the CNN identifies defects and assesses reliability in real-world settings.	
59	TMMACO114	ESTIMATION OF CHANNEL USING FFT IN INTELLIGENT REFLECTING SURFACES FOR 5G AND BEYOND	Communication
		Objective : The objective is to evaluate an FFT- based channel estimation method for an IRS- assisted 5G OFDM communication system, focusing on beamforming, multipath delay spread, SNR variations, RE count, and training sequence sparsity.	
50	TMMACO115	Beyond 5G: Reducing the Handover Rate for High Mobility Communications	Communication
		Objective : Developing proximity-based clusters utilizing hierarchical partitioning can enhance nomadic cell formation for handling high handover rates in dense 5G and beyond	

		networks, addressing scalability, real-time constraints, and pragmatic challenges overlooked by prior schemes.	
51	TMMACO116	AN APPROACH FOR LINEAR PHASE FIR LOW PASS AND HIGH PASS FILTER DESIGN USING AHA ALGORITHM	Communication
		Objective : This study proposes the Artificial Hummingbird Optimization (AHA) algorithm to design optimal FIR low-pass and high-pass filters, achieving improved filter coefficients compared to PSO, BFO, GWO, and BAT in terms of transition width, passband ripples, stopband ripples, and stopband attenuation.	
52	TMMACO117	SELFISH NODE DETECTION WITH QUEUE LEARNING BASED WSN Objective: Implement Queue Learning to detect selfish nodes in Wireless Sensor Networks, reducing packet loss and enhancing network performance by monitoring nodes over time to assess their behavior and trustworthiness.	Communication
53	ТММАСО93	Data-Importance Aware Radio ResourceAllocation: Wireless CommunicationHelps Machine LearningObjective: This study aims to optimize radioresource allocation in Edge AI systems byevaluating data importance for centralized anddistributed edge machine learning. Effectiveresource allocation strategies are proposed andextensively tested to enhance machine learningperformance.	Communication
54	TMMASP193	Implementation of Self-Organized Operational Neural Networks for R-Peak Detection in Holter ECGs	Signal Processing

		Objective : We propose 1-D Self-ONNs for improved R-peak detection, outperforming CNNs with lower computational complexity.	
55	TMMACO121	ImprovedLocalizationbyRoutePositioningbasedNodeLocationDetectionontheWirelessSensorNetwork </th <th>Communication</th>	Communication

TRENDY MATLAB ACADEMIC LIVE PROJECTS

Domain
mage Processing
mage Processing/Artific al Intelligence
ignal Processing
lignal Processing
mage Processing/Artific al Intelligence
ma

6	TMMAIP435	DIABETIC RETINOPATHY STAGE CLASSIFICATION USING CONVOLUTIONAL NEURAL NETWORKS Objective: The study aims to classify Diabetic Retinopathy (DR) stages accurately, using Convolutional Neural Networks (CNNs). Inception Net V3 excelled, demonstrating deep learning's potential in biomedical image analysis for DR assessment.	Image Processing/Artific ial Intelligence
7	TMMAIP437	 Contrast and Colour Improvement based Haze Removal of Underwater Images using Fusion Technique Objective: Our proposed underwater image enhancement technique employs fusion, contrast stretching, and Auto White Balance to mitigate light scattering and absorption effects, improving color, contrast, and object visibility in degraded underwater images. 	Image Processing/Artific ial Intelligence
8	TMMAAI311	 MICROORGANISM IMAGE RECOGNITION BASED ON DEEP LEARNING APPLICATIONS Objective: This study presents a deep learning-based system for microorganism image recognition using the LeNet architecture. By leveraging convolutional neural networks, the model achieves high accuracy in identifying various microorganisms, demonstrating significant improvements over conventional methods. 	Image Processing/Artific ial Intelligence
9	TMMAIP425	 ENHANCED EDGE DETECTION USING PSO ALGORITHM FOR COMPUTER VISION Objective: An innovative edge detection method uses Particle Swarm Optimization (PSO), optimizing particle positions to capture edge information effectively. This adaptive approach, outperforming traditional techniques, shows high accuracy and robustness in challenging conditions. 	Image Processing/Artific ial Intelligence
10	TMMAIP423	Lung Nodule Segmentation Using Adaptive Thresholding and Watershed Transform Objective: This study introduces a method for lung nodule segmentation using adaptive thresholding and watershed transform techniques. Pre-processing includes histogram equalization and noise filtering. Segmentation utilizes edge masks, morphological operations, and marker-controlled watershed. Lesion diameter is measured to identify abnormal nodules. The technique's accuracy is validated, showing success in detecting and characterizing lung nodules.	Image Processing/Artific ial Intelligence

11	TMMAIP422	BONE EXTRACTION IN X-RAY IMAGES BY ANALYSIS OF LINE FLUCTUATIONS Objective: A new bone segmentation method uses noise reduction and edge detection, analysing intensity fluctuations for more accurate results. It outperforms existing techniques, benefiting medical imaging.	Image Processing/Artific ial Intelligence
12	TMMACO96	GWO-LPWSN Grey Wolf Optimization Algorithm for Node Objective: Develop an improved energy-efficient clustering protocol (IEECP) for wireless sensor networks (WSNs) in the Internet of Things (IoT) to increase network lifespan and optimize sensor node energy use. This research incorporates a new grey wolf optimization (GWO) algorithm to enhance node localization accuracy in WSNs.	Communication
13	TMMACO113	OFDMBasedRADAR-CommunicationSystemDevelopmentObjective:InvestigateanOFDM-basedRADCOMsystemtoenhancevehicularcommunicationsandradardetection.Analyzesystemperformanceunderdynamicconditionsforcommunication(BER)andradar(targetdetection).	Communication
14	TMMACO95	AN IMPROVED METHOD OF PARTICLE SWARM OPTIMIZATION FOR PATH PLANNING OF MOBILE ROBOT Objective: Improved PSO enhances mobile robot path planning, addressing slow convergence with refinements like cubic spline interpolation, uniform distribution, and exponential attenuation. IPSO achieves shorter paths and reduced iteration time.	Communication
15	TMMACO97	ENERGY EFFICIENT CLUSTERING USING SMO AND ROUTING WITH FIREFLY ALGORITHM IN WIRELESS SENSOR NETWORKS Objective: Optimizing energy efficiency is crucial to extending wireless sensor networks' stability. Clustering-based methods, using Spider Monkey Optimization, can improve cluster-head selection and reduce energy usage.	Communication
16	TMMACO112	A Robust Speaker Identification System for Natural Objective: Analyze audio signals to extract features, compare classifiers, assess accuracy, and visualize results for normal and whispered speech.	Communication

17	TMMACO109	Covert speech communication through audio steganography using DWT and SVD	Communication
		Objective : This study presents a semi-blind audio steganography algorithm using discrete wavelet transform (DWT) and singular value decomposition (SVD) to covertly embed speech into cover audio, demonstrating robust imperceptibility and resistance to various attacks.	
18	TMMACO21 & TMPGCO17	ENERGY EFFICIENCY OPTIMIZATION FOR MIMO VISIBLE LIGHT COMMUNICATION SYSTEMS <i>Objective</i> : Maximize energy efficiency in MIMO VLC systems while meeting power, BER, and data rate constraints.	Communication
19	TMMACO118	An Improved Data Procurement Approaches in Wireless Sensor Networks Objective: This study improves Wireless Sensor Networks by optimizing data acquisition through effective cluster formation and CHIRON protocol.	Communication
20	TMMACO119	SCHEDULING PROBLEMS IN WIRELESS SENSOR NETWORKS AND INTERNET OF THINGS: A COMPARATIVE OVERVIEW Objective: Minimizing communication delay in low power networks is crucial for reducing energy consumption and enhancing lifespan.	Communication
21	TMMACO120	IMPROVED UNDERWATER WIRELESS COMMUNICATION SYSTEM USING OFDM TECHNIQUE Objective: The paper enhances underwater wireless communication using OFDM to reduce BER and improve SNR with simulations.	Communication

APPLICATION / STANDARD MATLAB ACADEMIC LIVE PROJECTS

S. No	Project Code	Title	Domain
1	TMMAIP418	INTERPRETATION OF SIGN LANGUAGE RECOGNITION USING DEEP LEARNING TECHNIQUES	Image Processing
		Objective : This study examines deep learning for sign language interpretation, focusing on convolutional neural networks (CNNs). The research explores dataset preparation, model design, and training methods, achieving improved accuracy in sign language recognition.	
2	TMMAAI274	 Early pest detection from crops using image processing and computational intelligence. Objective: This study develops an early pest detection system for crops using image processing and computational intelligence. The method involves pre-processing, segmentation, feature extraction, and SVM classification to accurately identify pests, enhancing agricultural pest management. 	Image Processing/Artif icial Intelligence
3	TMMAAI294	DEEP LEARNING-BASED AUTOMATED DETECTION OF COPYING BEHAVIOR IN EXAMINATIONS Objective: This research presents a novel Convolutional Neural Network (CNN) approach for detecting student copying in exams, aiding educational institutions in preserving academic integrity and maintaining fair examination environments.	Image Processing/Artif icial Intelligence
4	TMMAAI295	Hand Gesture Recognition for Sign Language Using CNN Objective: Our objective is to develop a CNN-based system for sign language recognition, enhancing accessibility. We train the model on diverse sign language gestures, using data augmentation techniques for improved performance.	Image Processing/Artif icial Intelligence
5	TMMAAI296	REAL-TIME FACIAL RECOGNITION FOR ANTI- THEFT WITH ML SVM AND HOG FEATURES <i>Objective: This study introduces a real-time anti-theft system using facial recognition with Support Vector Machines and Histogram of Oriented Gradients for improved security in diverse environments.</i>	Image Processing/Artif icial Intelligence

takeoffedu[®] g R O U P

6	TMMAAI297	ACCIDENT DETECTION USING DEEP LEARNING Objective: Deep Learning-based accident detection uses	Image Processing/Artif icial Intelligence
		Convolutional Neural Networks to analyze vehicle and roadside camera data. This approach accurately identifies accidents, assesses severity, and aids emergency response prioritization, enhancing road safety.	
7	TMMAAI298	Segmentation and Classification of Melanoma Skin Cancer using Deep Learning Techniques	Image Processing/Artif icial Intelligence
		Objective : This study examines deep learning-based melanoma diagnosis, emphasizing CNNs for segmenting and classifying skin cancer. Pre-processing uses image resizing, grayscale, noise addition, median filtering, binarization, and morphological operations. Classification assesses benign or malignant melanomas, measuring accuracy.	
8	TMMAAI276	Classification of Human white blood cell images	Image
		Objective : This study applies the "SqueezeNet" convolutional neural network to improve the classification of white blood cells. By fine-tuning hyperparameters, it aims to enhance diagnostic accuracy and efficiency, overcoming traditional test limitations.	Processing/Artif icial Intelligence
9	TMMAAI299	Real time image-based attendance system	Image Processing/Artif
		Objective : A real-time image-based attendance system for educational settings utilizes pre-processed images from Google, employing Convolutional Neural Networks for accurate student identification and storing attendance details in Excel for efficient tracking.	icial Intelligence
10	TMMAAI278	SMART TRAFFIC SAFETY SYSTEM WITH AUTOMATED HELMET DETECTION AND DYNAMIC SIGNAL CONTROL	Image Processing/Artif icial Intelligence
		Objective : This Smart Traffic Safety System integrates YOLOv2- based helmet detection and Dynamic Signal Control. It identifies motorcyclists without helmets, adjusting traffic signals to improve safety and traffic flow. This technology enhances road safety and management.	
11	TMMAAI300	DIABETIC RETINOPATHY USING CNN RESNET-101	Image Processing/Artif
		Objective : This study investigates the use of ResNet-101, a Convolutional Neural Network architecture, for automated detection and classification of Diabetic Retinopathy (DR) in retinal fundus images. The model's performance is measured using sensitivity, specificity, and AUC-ROC, demonstrating potential for accurate DR diagnosis.	icial Intelligence

takeoffedu [©] R O U P

12	TMMAAI301	MULTIPLE TYPES OF CANCER CLASSIFICATION USING CT/MRI IMAGES BASED ON LEARNING WITHOUT FORGETTING POWERED MOBILENETV2 MODELSObjective:This study introduces a new technique for classifying various cancers using CT/MRI images. By integrating MobileNetV2 models, the research addresses sequential learning without forgetting, achieving high accuracy and computational efficiency.	Image Processing/Artif icial Intelligence
13	TMMAAI302	Oil spill identification based on DAM UNet model using MATLAB Objective: The research aims to identify oil spills using a DAM UNet model in MATLAB. It involves pre-processing with radiometric correction, terrain correction, and Lee speckle filtering, followed by semantic segmentation. Denoising with a Wiener2 filter and PSNR calculation complete the workflow.	Image Processing/Artif icial Intelligence
14	TMMAAI303	Agrobot agricultural robot using iot and machine learning Objective: The research aims to identify oil spills using a DAM UNet model in MATLAB. It involves pre-processing with radiometric correction, terrain correction, and Lee speckle filtering, followed by semantic segmentation. Denoising with a Wiener2 filter and PSNR calculation complete the workflow.	Image Processing/Artif icial Intelligence
15	TMMAAI304	SMART SAFETY: AI SEAT BELT MONITORING & DROWSINESS DETECTION Objective: This research explores a Smart Safety system using AI for enhanced vehicle safety. It integrates AI Seat Belt Monitoring, ensuring proper use, and Drowsiness Detection, alerting when drivers are fatigued.	Image Processing/Artif icial Intelligence
16	TMMAAI305	Diabetic Retinopathy using CNN - Alex net <i>Objective</i> : This study examines the effectiveness of using the AlexNet Convolutional Neural Network architecture to automate the detection of diabetic retinopathy from retinal images, potentially improving early diagnosis and intervention.	Image Processing/Artif icial Intelligence
18	TMMAIP432	ANTI-SPOOFING IDENTIFICATION IDENTIFICATION WITH WITH THE WITH THE HELP OF FACESECURITY AND FACE RECOGNITIONObjective: This paper examines the use of anti-spoofing techniques to enhance face recognition security. It analyses methods like liveness detection and texture analysis, exploring their impact on system robustness and authentication accuracy.	Image Processing/Artif icial Intelligence

r			
19	TMMAAI306	SKINDISEASEDETECTIONUSINGCNN(CONVOLUTIONAL NEURAL NETWORK)Objective:Skin diseases present significant global health challenges.This study employsConvolutional Neural Networks (CNNs) forautomated skin disease detection, utilizing diverse lesion images totrain and evaluate the model's performance.	Image Processing/Artif icial Intelligence
20	TMMAAI307	Deep Learning-Based Classification of Blood Groups, Cell Counts, Ages, and Genders Objective: This study uses deep learning to classify biomedical data, including blood groups, cell counts, ages, and genders. It employs a Convolutional Neural Network (CNN) with pre-processing techniques like image resizing and noise removal.	Image Processing/Artif icial Intelligence
21	TMMAAI308	Breast Cancer Classification using Capsule Network with Pre-processed Histology Images Objective: To classify breast cancer tissue samples into Benign, In situ, Invasive, and Normal, this study uses Capsule Networks with pre-processed histology images, aiming to improve diagnostic accuracy and interpretability.	Image Processing/Artif icial Intelligence
22	TMMAAI281	Gas Leakage System Using Image Processing and Deep Learning Objective: The Gas Leakage System utilizes image processing and deep learning for detecting and classifying gas leaks. It employs a Convolutional Neural Network (CNN) for leak detection, with segmentation for severity assessment, enhancing system accuracy and safety.	Image Processing/Artif icial Intelligence
23	TMMAAI309	DESIGN AND DEVELOPMENT OF AGRI BOT FOR SEEDING, PLOUGHING AND WATERING PURPOSE <i>Objective:</i> The study uses Convolutional Neural Network (CNN) to classify leaf diseases and suggests fertilizers based on the results. It involves image preprocessing, disease identification, classification, and tailored fertilizer recommendations, aiming to improve agricultural practices.	Image Processing/Artif icial Intelligence
24	TMMAAI310	Enhancing Biometric Authentication with Convolutional Neural Networks for Finger Vein and Palm Recognition Objective: This study investigates biometric authentication by utilizing Convolutional Neural Networks (CNNs) for palm and vein recognition. It employs datasets of palm and vein images, pre- processes them, and applies CNN classification to improve authentication accuracy.	Image Processing/Artif icial Intelligence

25	TMMAIP433	PROTECTING WATER BODIES AND FORESTS OF TIRUPATHI (ENVIRO DRONE) Objective: This study explores MATLAB's image subtraction to assess environmental integrity in water bodies and forests using EnviroDrone. It compares satellite images with ground truth data to detect ecosystem changes, aiming to guide conservation efforts.	Image Processing/Artif icial Intelligence
26	TMMAAI270	CLASS ATTENDANCE TRACKING SYSTEM BASED- ON PALM VEIN INFORMATION USING CNN Objective: Palm vein recognition and Convolutional Neural Networks (CNNs) are used for attendance tracking in educational settings. The system uses near-infrared imaging to capture unique vascular patterns, which are then processed with CNNs to identify individuals accurately, streamlining attendance management.	Image Processing/Artif icial Intelligence
27	TMMAAI272	Image Enhancement and Face Identification in Surveillance Videos with Deep LearningObjective: The paper introduces a two-step method for enhancing surveillance video frames and identifying faces. First, Convolutional Neural Networks (CNNs) improve image quality by reducing noise and enhancing contrast. Then, a CNN-based model accurately detects and identifies faces by matching them with a trained dataset.	Image Processing/Artif icial Intelligence
28	TMMACO94	MODIFIEDLEACHPROTOCOLWITHGWOOPTIMIZATION IN WSN (block diagram pending)Objective:LEACH-basedWSN energy efficiency is enhanced withGWO optimisation, selecting optimal cluster heads by minimisingintra-clusterdistance, energy use, and maximising nodes undercontrol, thereby extending network longevity.	Communication
29	TMMACO108	Aerial Computing <i>Objective</i> : Project explores aerial computing using scale-free distribution to generate target points in 1000x1000m subareas, employing density-based clustering and varying routing strategies.	Communication
30	TMMAWS92	ENHANCEMENT OF LEACH PROTOCOL WITH MULTIHOP PROTOCOL WITH NON-UNIFORM SIZED CLUSTERS AND DETECTION OF FALSE NODES IN WSN Objective: Develop a wireless sensor network with multi-hop routing for efficient energy consumption and extended lifespan. Use a cost function based on residual energy and proximity to detect false nodes.	Communication

31	TMMACO98	Comparison of Wide Band Sensing and Narrow Band Sensing in Cognitive Radio Networks	Communication
		Objective : Propose a wideband spectrum sensing model using sub- Nyquist sampling to reduce sample rates. Employ a subspace estimator to distinguish occupied and unoccupied spectrum channels without requiring signal attribute knowledge.	
32	TMMAWS93	WIRELESS END-TO-END IMAGE TRANSMISSION SYSTEM USING SEMANTIC COMMUNICATIONS	Communication
		Objective : This study explores semantic communication for 6G networks, leveraging AI to efficiently transmit semantically segmented data. A DCGAN decoder generates images, enabling bandwidth savings over traditional communication.	
33	ТММАСО99	DESIGN AND DEVELOPMENT OF ENERGY EFFICIENT TELE COMMAND SUBSYSTEM USING SOFTWARE DEFINED RADIO	Communication
		Objective : The objective of this project is to design an energy- efficient telecommand subsystem using software-defined radio. This involves implementing Spectral Covariance Method with Different Window Technique to improve energy optimization and maintain performance in varying SNR conditions. Verification will be conducted through Signal to Noise Ratio (SNR) and Bit-Error Rate (BER).	
34	TMMASP177	DENOISE SPEECH USING DEEP LEARNING TECHNIQUES	Signal Processing
		Objective : Develop a CNN-based system to denoise speech signals, improving audio clarity and communication, aiding voice assistants, telecommunication, and assistive devices, achieving 92% accuracy in removing noise.	
35	TMMACO100	A TRUSTED LIGHTWEIGHT COMMUNICATION STRATEGY AND A LOCATION AND VELOCITY PREDICTION-ASSISTED FOR FANETS	Communication
		Objective : Develop a secure and efficient clustering algorithm for Flying Ad hoc Network (FANET), optimizing end-to-end delay, energy consumption, and dishonesty detection in content-centric communication environments with unmanned aerial vehicles (UAVs).	
36	TMMASP178	Sound Localization and Separation of Different Sounds from an Audio Clip	Signal Processing
		Objective : Analyze sound clips with varying distances for localization using time and intensity differences, focusing on left/right directions. Apply this to separate distinct sounds based on frequencies, pitch, and amplitude.	

37	TMMASP179	CLASSIFICATION OF APNEA USING BREATH RATE ESTIMATIONS FROM ECG AND PPG SIGNALS	Signal Processing
		Objective : A novel framework for estimating Breathing Rate (BR) from ECG and PPG signals uses Empirical Mode Decomposition, Discrete Wavelet Transform, and an Extended Kalman Filter to ensure accuracy and robustness, even in high-noise environments.	
38	TMMAIP162	Denoising of ECG signals based on noise reduction algorithms in EMD and wavelet domains	Signal Processing
		Objective : This paper introduces a new ECG denoising method that combines empirical mode decomposition (EMD) and discrete wavelet transform (DWT), improving signal clarity while preserving key features.	
39	TMMASP192	Covert speech communication through audio	Signal
		Objective : Implement audio steganography using Discrete Wavelet Transform (DWT) and Singular Value Decomposition (SVD) for embedding and extraction with audio files.	Processing
40	TMMACO102	IMPLEMENTATION OF INTERFERENCE MINIMIZATION ALGORITHM FOR 8X8 MU-MIMO SYSTEMS DOWNLINK WITH A FIXED- COMPLEXITY SPHERE DECODER	Communication
		Objective : Propose a fixed-complexity sphere decoder and interference mitigation method for downlink MU-MIMO systems, achieving near-optimal performance and significant improvement in inter-user interference reduction.	
41	TMMACO97	ENERGY EFFICIENT CLUSTERING USING SMO AND ROUTING WITH FIREFLY ALGORITHM IN WIRELESS SENSOR NETWORKS	Communication
		Objective : The goal is to improve energy efficiency in wireless sensor networks through a novel cluster-head selection technique. It uses sampling-based spider monkey optimisation (SMO) to address limitations in current methods.	
42	TMMASP180	AI- BASED HEART STROKE PREDICTION AND CLASSIFICATION USING ECG AND PPG BIO- SIGNALS	Signal Processing
		Objective : This project aims to predict heart strokes using artificial intelligence, primarily utilizing artificial neural networks (ANN) trained on public databases to achieve over 92% accuracy, followed by classification with KNN.	
43	TMMASP181	ECG Signal Extraction Method Based on EMD Decomposition	Signal Processing
		Objective : An ECG signal extraction technique combining wavelet and singular value decomposition aims to reduce noise. Singular values guide reconstruction, and wavelet thresholding denoises to achieve a cleaner signal.	

44	TMMASP182	FEATURE EXTRACTION AND ANALYSIS OF SPEECH SIGNAL BASED ON EMPIRICAL MODE DECOMPOSITIONSignal ProcessingObjective: This study focuses on improving speech signal processing by using Empirical Mode Decomposition (EMD) to extract reliable features from dynamic, noisy speech signals for better speechSignal	
45	TMMACO103	recognition accuracy. MALICIOUS DATA INJECTION DETECTION AND PREDICTION IN WIRELESS SENSOR NETWORK USING IMPROVED SWARM INTELLIGENCE	Communication
		Objective : To enhance security in wireless sensor networks (WSNs), we developed an improved swarm intelligence algorithm to detect and eliminate malicious data. Our tests demonstrate its effectiveness in safeguarding WSNs.	
46	TMMASP183	ENHANCEMENT AND NOISE REMOVING FROM SPEECH USING EMPIRICAL MODE DECOMPOSITIONObjective: The objective is to reduce noise in speech using Empirical Mode Decomposition (EMD). Noisy speech with varying signal-to- noise ratios (SNR) undergoes EMD, resulting in lower noise and improved Mean Square Error (MSE).	Signal Processing
47	TMMACO104	MATRIX DECOMPOSITION FOR MIMO DETECTION Objective : This study investigates matrix decomposition for Massive MIMO systems, comparing computational complexities of QR, Cholesky, and UN algorithms against modern large MIMO detection techniques to guide VLSI and system design choices.	Communication
48	TMMASP184	Implementation of Feature Extraction of Neuro Muscular EMG Signal Objective: Develop and implement a denoising technique for EMG signals to enhance data quality, enabling accurate feature extraction and classification for improved diagnosis of neuromuscular diseases using KNN classifier.	Signal Processing

takeoffedu [©] R O U P

49	TMMACO105	CLUSTERING OF NODES USING SMO AND SELFISH NODE DETECTION WITH OPTIMIZED TRUST COMPUTATION MODEL AND ROUTING WITH CHIMP - AODV BASED WSN	Communication
		Objective : In a WSN, optimal cluster formation is crucial for balanced energy consumption. Using SMO-based clustering and Chimp AODV routing, we aim to reduce energy imbalance during packet transmission. A trust computation model identifies and isolates selfish nodes, improving network performance and reliability.	
50	TMMACO106	Improvement of LEACH Protocol for WSNs in Terms of Energy Efficient and Network Lifetime using IEECP Protocol	Communication
		Objective : The objective of this paper is to propose an enhanced energy-efficient clustering protocol (IEECP) for wireless sensor networks (WSNs) in the Internet of Things (IoT). This protocol aims to extend network lifespan by reducing energy consumption through optimized cluster formation and rotation-based cluster head selection.	
51	TMMASP185	Noise Cancellation in Speech Signal Using Nonlinear Adaptive Filters	Signal Processing
		Objective : Develop and compare nonlinear adaptive filters—Signed Regressor LMS, Signed LMS, and Signed Error LMS—to remove noise from speech signals. Analyze and identify the most effective technique for optimal denoising.	
52	TMMACO107	A Study of Non-Binary Low-Density Parity-Check Codes and Its Applications	Communication
		Objective : Investigate non-binary LDPC codes, explaining Reed- Solomon-based encoding and fast Fourier transform-based decoding. Discuss the superior performance of non-binary LDPC over binary codes and explore practical applications.	
53	TMMASP187	LSTM - Aided Speech Enhancement with Wiener Filter Adaptation with Learned Loss Function	Signal Processing
		Objective : This research focuses on improving speech signal quality using a deep learning-based model. It employs Non-negative Matrix Factorization and Long Short-Term Memory to enhance voice signals, optimizing noise reduction through a learned Wiener filter.	

54	TMMASP188	AI BASED PEST DETECTION AND ALERT SYSTEM FOR FARMERS USING IOT Objective: Develop an AI-based system to detect and classify agricultural pests using acoustic and infrared sensors, utilizing neural networks for real-time monitoring, and sending alerts to farmers via IoT and Wi-Fi.	Signal Processing
55	TMMASP189	MODULATIONANDDEMODULATIONOFUNDERWATERRFOFDMSIGNALINSHALLOWWATERSObjective:Develop an underwaterOFDM-based communicationsystem using RF signals.Address signal loss challenges at lowerdepths, optimizing for shallow waters.Implement modulation anddemodulation techniques tailored for underwater RF.	Signal Processing
56	TMMASP190	DEVELOPMENT OF INTERACTIVE RF (RADIO FREQUENCY) CANCER DATABASE USING GUI IN MATLAB Objective: Develop an interactive Matlab GUI cancer database using RF data sourced from 21 cancer hospitals worldwide, addressing compatibility issues and meeting the demand for user- friendly cancer databases.	Signal Processing
57	TMMASP191	DESIGN OF UNDERWATER COMMUNICATION NOISE ANALYSIS <i>Objective:</i> The objective is to simulate and study underwater audio communication using MATLAB. The project models underwater noise and employs FIR filters to control and analyze signal quality, utilizing QPSK modulation and demodulation techniques for transmitter and receiver design.	Signal Processing
58	TMMACO92	SECURITY AND FEASIBILITY OF POWER LINE COMMUNICATIONS SYSTEM Objective: The paper explores Power Line Communication (PLC) as a broadband alternative to traditional wiring, highlighting its cost- effectiveness and discussing its security aspects, authentication, and encryption processes.	Communication

59	TMMASP174	AI- BASED HEART STROKE PREDICTION USING ECG AND PPG BIO-SIGNALS Objective: This project uses Artificial Neural Networks (ANN) to predict heart attacks, utilizing training and validation from publicly available heart attack databases, aiming for over 92% accuracy.	Signal Processing
60	TMMAAI312	Scalp Eye: A Machine Learning-Based Scalp Hair Inspection and Diagnosis System for Scalp Health Objective: This paper presents a MATLAB-based automated scalp hair inspection and classification system using image processing and machine learning.	Image Processing/Artif icial Intelligence
61	TMMAAI313	Sign language Recognition Using Deep Learning AlgorithmObjective: Develop a real-time sign language recognition system using deep learning and a webcam for enhanced communication.	Image Processing/Artif icial Intelligence
62	TMMACO123	DETECTION OF SELFISH NODES WITH Q LEARNING AND IMPROVING ROUTING USING ACO BASED WSN Objective: Q Learning detects selfish nodes in WSNs, improving trust and performance by using Ant Colony Optimization.	Communication

S. No	Title ID	Title Name	Journal type	Domain
1	TVMATO1154	DESIGN OF 16 BIT RISC PROCESSOR Objective: In this research, a 16-bit RISC processor with suggested behavioral design and functional properties is put forth.	Concept	Airthematic Core
2	TVMAFE581	Integration of SPI with AXI Protocol Objective: The main objective of this project is to integrate the SPI protocol using AXI	Concept	Communication
3	TVMAFE582	LOW POWER DESIGN OF SPI AND I2C PROTOCOL IN VERILOG HDL Objective: The purpose of this paper is to provide a full description of a high speed SPI Master/Slave implementation with clock gating technology	Concept	Communication
4	TVMABE228	An Area-Efficient High- Resolution Segmented $\Sigma - \Delta$ - DAC for Built-In Self-Test Applications Objective: In this article, a segmented DAC architecture is proposed.	Transaction	Transistor Logic
5	TVMABE229	Designandperformanceanalysisof4-bitNano-Processor design for low area,low powerand minimumlowpowerandminimumdelayusing32nmCMOStechnology.UsingUsingUsingObjective:Themajorconcentrationison	Transaction	Nano Technologies

		proposed 4-bit Nano processor		
		using CMOS 32nm technology		
		by using the Cadence Virtuoso		
		software tool.		
6		Integration of I2C with AXI	Concept	Communication
	TVMAFE583	Protocol		
		Objective: The main objective		
		of this project is to integrate the		
7	TVMABE238	I2C protocol using AXI Design and Implementation	Journal	Core Memories
/	I VIVIADE236	Design and Implementation of 4-Bit ALU for Low-Power	Journai	Core Memories
		using Adiabatic Logic based		
		on CMOS		
		Objective: In this paper, a		
		novel low-power adiabatic		
		logic based on CMOS devices		
		has been proposed.		
8	TVMABE233	Power efficient synchronous	Journal	Low Power
		counter design		VLSI
		Objective: In this brief, we		
		propose a power efficient		
		design of synchronous counters		
		that reduces the power		
		consumption due to clock		
		distribution for different flip-		
		flops and offers high reliability		
9	TVMABE234	CMOS-Memristor Inverter	Conference	Core Memories
		Circuit Design and Analysis		
		Using Cadence Virtuoso		
		Objective: This paper		
		investigates the benefits of		
		combining CMOS logic along		
		with memristors		
10	TVMABE238	A 0.6-V Low-Power	Transactions	Low power
		Variable-Gain LNA in 0.18-		VLSI
		μm CMOS Technology		
		Objective: By using the		
		forward body biasing, input		
		feedback capacitor, current-		
		reuse and multiple-gate		
	1			

		topologies, the LNA can		
		achieve low power		
		consumption, small chip area,		
		and high linearity.		
11	TVPGBE162	A Wide-Range Static	Journal	Low Power
		Current-Free Current		VLSI
		Mirror-Based LS With Logic		
		Error Detection for Near-		
		Threshold Operation		
		Objective: The objective is to		
		propose a current mirror-based		
		level shifter (LS) with a logic		
		error detection (CMLS-LED),		
		which is capable of converting		
		a near-threshold signal to a		
		super-threshold signal.		
12	TVMAFE598	Compact Bit-Parallel Systolic	Journal	DSP Core
		Multiplier Over GF(2m)		
		Objective: This article presents		
		a compact and efficient bit-		
		parallel systolic array structure		
		for multiplication over the		
		extended binary field, GF(2m).		
13	TVPGBE163	Design of High-Performance	Journal	Transistor
		GDI Logic based 8-Tap FIR		Logic
		Filter at 22nm CMOS		
		Technology using Array		
		Multiplier		
		Objective: This paper		
		investigates the modelling and		
		implementation of a Finite		
		Impulse-Response (FIR) block		
		developed utilizing GDI-based		
		circuits as well as basic blocks.		
14	TVMATO1156	Wideband Variable-Gain	Access	Cadence EDA
		Amplifiers Based on a	1 100000	
		Pseudo-Current-Steering		
		Gain-Tuning Technique		
		Objective: This paper reports		
		two variable-gain amplifiers		
		ino variable-gain amplifiers		

		(VGAs) featuring a new		
		<i>pseudo-current-steering gain-</i>		
15	TVMAFE599	tuning technique.	Canfanana	Tracting
15	IVMAFE599	VLSI Implementation of	Conference	Testing
		decoding algorithms using		
		EG-LDPC Codes		
		Objective: The main objective		
		in this paper is to creating of		
		three different decoder		
ļ		algorithms for LDPC Codes.		
16	TVPGFE334	High-performance multiply-	Journal	Airthematic
	IVFGFE554	accumulate unit by		Core
		integrating binary carry		
		select adder and counter-		
		based modular wallace tree		
		multiplier for embedding		
		system		
		Objective: The main objective of		
		this project is to design MAC unit in		
		order to achieve lower power		
		consumption on utilizing the high-		
		speed binary carry select adder.		D 200 2
17	TVMAFE600	Low Complexity	Journal	DSP Core
		Implementation of OTFS		
		Transmitter using Fully		
		Parallel and Pipelined		
		Hardware Architecture		
		Objective: The main aim of		
		this project is to design the		
		OTFS for higher performance.		
18	TVMAT01157	FPGA-Based Multi-Level	Journal	Arithmetic core
	IVMATOI157	Approximate Multipliers for		
		High-Performance Error-		
		Resilient Applications		
		Objective: This paper presents		
		approximate multipliers which		
		are efficiently deployed on		
		Field Programmable Gate		
, 1		U		
		Arrays (FPGAs) by using newly		

[compressors at different levels		
		of accuracy.		
19	TVMAT01158	Design and Verification of 4	Journal	Xilinx Vivado
17	111101100	X 4 Wallace Tree Multiplier	Journal	
		Objective: The aim of this		
		paper is to study 4x4 Wallace		
		tree multiplier. In high		
		performance processing units		
		& computing systems,		
		multiplication of two binary		
		numbers is primitive and most		
		frequently used arithmetic		
		operation.		
20		Design And Implementation	Journal	Communication
	TVMAFE601	of UART Based on Verilog	0.0000000	
		HDL		
		Objective: This paper will fully		
		understand the structure and		
		principle of UART, function		
		and implementation on the		
		basis of the use of Verilog HDL		
		language, by describing its		
		function, to achieve the		
		construction of UART.		
21	TVPGBE164	Design and Implementation	Conference	Transistor
		of RNB multiplier Using NP		Logic
		Domino logic		
		Objective: The main objective		
		of this project is to reduce the		
		delay of RNB multiplier using		
		NP Domino Logic.		
22	TVMAOT08	A Real-Time Object	Transaction	Matlab
		Detection Processor With		Interfacing
		XNOR- Based Variable-		
		Precision Computing Unit		
		Objective: In this article, we		
		propose an algorithm-		
		hardware co-optimization		
		approach to designing a real-		
		time object detection system.		

23	TVMAFE602	An Ultra-Efficient	Transaction	Arithmatic core
23	I VMAPEOUZ		Tansaction	Antimatic core
		With Error Compensation		
		for Error-Resilient		
		Applications		
		Objective: The main objective		
		of this project is to present an		
		energy efficient approximate		
		multiplier.		
24	TVPGFE335	Low power Dadda multiplier	Conference	Arithmatic core
		using approximate almost full		
		adder and Majority logic		
		based adder compressors		
		Objective: In this work, we		
		proposed a very novel design		
		approaches based on various		
		monolithic 4:2 compressors.		
25	TVMI111	High Speed Gate Level	Transaction	Arithmetic core
		Synchronous Full Adder		
		Designs		
		Objective: This article		
		primarily focuses on the novel		
		design of full adders at the logic		
		level and also highlights a		
		comparison with many other		
		existing gate level solutions,		
		from performance and area		
		perspectives.		
26	TVMABE239	Design of DRAM Sense	Conference	Core Memory
		Amplifier using 45nm		
		Technology		
		Objective: In this proposed		
		technique, we are utilising the		
		DRAM sense amplifier along		
		with the FSPA-VLSA (Foot		
		Switch PMOS Access Voltage		
		Latch Type Sense Amplifier).		
	1			1

27	TVMABE240 TVMABE236	Design and Analysis of a 2.4GHz Fully Integrated 1.8VPower Amplifier in TSMC180nm CMOS RF Process forWireless CommunicationObjective: In this paper,cascode topology withinductively degeneratedcommon-source CMOS poweramplifier is suggested withimproved gain, isolation, betterstability and sufficient linearityover the operating rangeA Low-Complexity Sensing	Conference	Transistor Logic Core memories
		Scheme for ApproximateMatchingContent-Addressable MemoryObjective: This brief presents anovel sensing approach forapproximate matching content-addressable memory (CAM)designed to handle largeHamming distances (HDs)between the query pattern andstored data.		
29	TVMAFE606	AxBMs: Approximate Radix- 8 Booth Multipliers for High- Performance FPGA-Based Accelerators Objective: This brief bridges this gap by proposing high performance approximate radix-8 Booth multipliers whose designs target FPGA- based systems.	Transaction	Arithmetic core

VLSI-Latest-Titles

30	TVPGFE337	FPGA implementation of	Journal
		high performance digital FIR	
		filter design using a hybrid	
		adder and multiplier	
		Objective: In this technique, the	
		basic hybrid adder is designed	
		with the help of 2-bit adders,	
		BEC and 4:1 Multiplexer for	
		high performance.	

VLSI- Standard-Titles

S.No	Title ID	Title Name	Journal type	Domain
1	TVPGFE329	VLSI Design of Pipelined FFT Architecture for DSP Application	Conference	DSP
		Objective: The main objective of this paper is to implement single delay feedback FFT.		
2	TVMAFE567	Area Reduction AES Algorithm in Hardware Trojan Detection	Conference	Communication
		Objective: The main objective of this project is to implement AES using Trojan Detection approach		
3	TVMAFE568	Module Implementation and Simulation of Timing Constraint Check Function of I2C Protocol Using Verilog	Conference	Communication
		Objective: The main objective of this paper is to implement I2C protocol to perform read/write operations		
4	TVMATO1150	Design & Verification of AMBA AHB-Lite Memory Controller	Conference	Communication
		Objective: The main aim of this project is to implement AMBA-3AHB lite to perform read/write operations		
5	TVMAFE571	High-Speed Counter With Novel LFSR State Extension	Transactions	Arithmatic Core
		Objective: The main objective of this project is to implement 64-bit counter based on LFSR		

6	TVMAFE569	Analysis of Low-Delay in 64- bit Vedic multiplier based MAC unit	Conference	Arithmetic core
		Objective: The main objective of this project is to implement MAC unit using vedic multiplier.		
7	TVMABE226	Low Power Redundant Transition Free TSPC Dual Edge Triggering Flip Flop Using Single Transistor Clocked Buffer	Transactions	Low Power VLSI
		Objective: The main objective of this project is to design the dual triggering flip-flop using STC		
8	TVMI106	An Energy Efficient High Performance CMOS Transmission Gate Full Adder Circuit	Conference	Transistor Logic
		Objective: The main objective of this project is to design the full adder using transmission gate logic		
9	TVMAFE572	Scalable Low-Cost Sorting Network with Weighted Bit- Streams	Conference	Communication
		Objective: The main aim of this work is to implement new sorting algorithm in order to reduce area.		
10	TVMI108	Towards Energy Efficient Cost Effective Toffoli Gate Design using Quantum Cellular Automata	Conference	QCA
		Objective: This work presents an energy-efficient and cost- effective QCA design of a 3X3 Toffoli gate which utilises the		

		Layered T (LT) logic reduction		
		technique.		
11	TVMAFE574	Truncated Booth Multiplier Design Of Approximate Compressors Using Verilog Hdl	Conference	Arithmetic Core
		Objective: The main objective of this project is to implement 16- bit booth multiplier using radix- 256 in order to improvise performance.		
12	TVMATO1153	Design of Advanced Encryption Standard using Verilog HDL	Conference	Communication
		Objective: The main objective of this AES is to encrypt the data with highly secured transmission of data.		
13	TVMAFE577	An Efficient Implementation of the Novel Data Encryption Standard (DES) Algorithm with Improved Key Generation Method Compared with Viterbi Decoder Objective: This study presents an efficient implementation of the Novel Data Encryption Standard (DES) algorithm with an improved key generation method and the result is compared with the Viterbi decoder algorithm	Conference	Communication
14	TVMI110	Efficient Novel Binary to Gray Code Converter Using Coulombic Interaction on	Conference	QCA

		QuantumDotCellularAutomataObjective:Inthisresearchpaper,anoveldesignforaBinarytograycodeconverterusingQCAtechnologyispresented.		
15	TVMA01	Encryption and Decryption usingDecryption optimizedReconfigurableReversibleGateObjective: This paper explains an application of reconfigurable logic, Encryption of data, Decryption of the same data implemented using Verilog coding.	Conference	Communication
16	TVMAFE578	FPGA Implementation of Associative Processors Objective: In this brief, we proposed a novel FPGA implementation of the AP, including the CAM and its peripheral circuits, such as the controller, data cache, instruction cache, and program counter. The design details of the whole AP architecture are described by Verilog HDL.	Transaction	DSP
17	TVPGFE331	FPGA-SupportedHDLApproachtoImplementReversibleLogicGate-BasedALUObjective:In this research, weSuggestadoptingreversiblelogicgatesratherthan	Conference	Airthematic core

		conventional gates to design and synthesize a 16-bit reversible ALU.		
18	TVMAFE580	Area-Efficient LFSR-Based Stochastic Number Generators with Minimum Correlation Objective: The main objective of this project is to reduce the size of SNGs, we propose a new design approach that shares a combination of the permutations and negations of one LFSR's output for several SNGs.	Journal	Communication
19	TVMAFE581	Integration of SPI with AXI Protocol Objective: The main objective of this project is to integrate the SPI protocol using AXI	Concept	Communication
20	TVMAFE582	LOW POWER DESIGN OF SPI AND I2C PROTOCOL IN VERILOG HDL Objective: The purpose of this paper is to provide a full description of a high speed SPI Master/Slave implementation with clock gating technology	Concept	Communication
21	TVMABE228	An Area-Efficient High- Resolution Segmented $\Sigma - \Delta$ - DAC for Built-In Self-Test Applications Objective: In this article, a segmented DAC architecture is proposed.	Transaction	Transistor Logic

VLSI- Standard-Titles

22	TVMAFE583	Integration of I2C with AXI Protocol Objective: The main objective of this project is to integrate the I2C protocol using AXI	Concept	Communication
23	TVMATO1155	A PROVABLY SECURE STRONG PUF BASED ON LWE:CONSTRUCTION AND IMPLEMENTATION Objective: The main objective of this project is to implement strong LFSR based PUF which provides high security to system hardware.	Access	Cryptography
24	TVMAFE584	ImplementationofDelayedLMSalgorithmbasedAdaptivefilterusingVerilogHDLObjective:This paper focuses onthe implementation ofDelayedLeastMeanSquarealgorithmbasedAdaptivefilterinVerilogHDL.	Journal	DSP Core
25	TVMAFE585	AxPPA Approximate ParallelPrefix AddersObjective: In this work, weintroduce approximate PPAs(AxPPAs) by exploitingapproximations in the POs.	Transactions	Airthematic Core
26	TVMABE230	Title: Robust Body Biasing Techniques for Dynamic Comparators <i>Objective:</i> This paper compares three different techniques: the clocked FBB (CFBB) proposed, an improvement of CFBB and a	Conference	Transistor Logic

		<i>new hybrid approach that achieves the best performance in terms of delay.</i>		
27	TVMABE231	Title: Overview on Latch-UpPrevention in CMOSIntegrated Circuits by CircuitSolutions	Journal	Transistor Logic
		Objective: An overview on circuit methodology used to prevent latch-up issues in CMOS integrated circuits (ICs) is presented in this article.		
28	TVMABE232	High-Precision and Low- Power Offset Canceling Tri- State Sensing Latch in NAND Flash Memory	Transaction	Low Power VLSI
		Objective: In this brief, the offset canceling tri-state sensing latch (OCTSL) is proposed that achieves high-precision and low-power read operation.		
29	TVPGBE155	Energy-Efficient Single- Ended Read/Write 10T Near- Threshold SRAM	Transaction	Core Memories
		Objective: The proposed SE10T improves read stability and write stability with the help of a built-in read-assist scheme and a power-gating technique, respectively, and reduces power/energy consumption by using single-ended read/write operation and stacking of transistors in the cell core.		
30	TVPGTO935	Comparative Analysis of Phase/Frequency Detector in a Complete PLL System	Conference	Core Memories
		Objective: This work goes to test various different		

		phase/frequency detector blocks with a standard charge pump and Voltage controlled oscillator design		
31	TVPGBE156	Local Bit-Line SRAM Architecture With Data- Aware Power-Gating Write Assist Objective: In this brief, a local bit-line (LBL) SRAM with data- aware power-gating write assist is proposed for near-threshold operation.	Transactions	Low Power VLSI
32	TVPGBE157	A Differential Flip-Flop With Static Contention-Free Characteristics In 28 Nm For Low-Voltage, Low-Power Applications Objective: A static contention- free differential flip-flop (SCDFF) is presented in 28-nm CMOS for low-voltage and low- power applications	Journal	Low Power VLSI
33	TVMAFE586	Architectural Exploration for Energy-Efficient LMS and NLMS Adaptive Filters VLSI Design Objective: This work proposes architectural solutions for LMS and NLMS algorithms targeting an energy-efficient VLSI design.	Conference	DSP Core
34	TVPGBE158	CMOSClock-GatedSynchronousUp-DownCounterWithHigh-Speed	Transactions	Transistor Logic

		Local Clock Generation and Compact Toggle Flip-Flop Objective: In this paper, a high- speed low-power CMOS synchronous up/down counter with a novel compact toggle flip- flop is proposed to achieve energy- and area-efficient speed enhancement		
35	TVMAFE587	Design and Implementation of BIST Architecture for low power VLSI Applications using VerilogObjective:The research investigates various power reduction techniques, including test pattern compression, selective clock gating, and power-aware test scheduling, to optimize power consumption during testing.	Conference	Testing
36	TVMAFE588	 Design of a VLSI Router for the Faster Data Transmission Using Buffer Objective: This paper proposes a modified VLSI-based router architecture that is optimized for high-speed data transfer and low power consumption. 	Conference	Communications
37	TVMAFE589	HighPerformanceVLSIArchitecture of FIR Filter forSeismic Signal ProcessingObjective:In this paper, wepresent a new LO and LDminimizationmatrix groupedCSE algorithm that outperformsexisting CSE algorithms.	Conference	DSP Core

38	TVMAFE590	Implementation of Area Efficient Adders for Inexact Computing	Conference	Arithmetic Core
		Objective: For high mathematical complexity applications, approximate adders are proposed as a feasible solution in this paper, which can give a better trade-off with accuracy in terms of energy consumed, area occupied and delay		
39	TVMAFE591	VLSI ARCHITECTURES FOR SECURITY ANALYSIS WITH DUAL-KEY LFSR USING BARREL SHIFTER AND S-BOX	Conference	Communications
		Objective: This paper focuses on building cryptographic systems using a scrambler circuit constructed using reversible logic gates, S-Box, a barrel shifter, and an LFSR that generates a 4-bit random key which is then used as a dual key for XOR and a barrel shifter.		
40	TVMAFE592	VLSI Design of Majority Logic based Wallace Tree Multiplier	Conference	Arithmetic Core
		<i>Objective:</i> By using the Wallace Tree multipliers architecture and improving the adder in each Wallace Tree phase, reduce the unnecessary latency.		
41	TVMAFE593	VLSI Synthesis of Multiply and Accumulate Structures Using Distributed Arithmetic	Conference	Arithmetic Core
		Objective: This paper shows how the parameter of inputs in		

		the data path affects different MAC cores.		
42	TVMAFE594	RealizationofHighPerformanceApproximateMultipliersforFPGAApplication	Conference	DSP Core
		Objective: The proposed study aims to provide a 64-bit approximation multiplier with high throughput and low latency for cutting-edge DSP applications.		
43	TVMABE235	A Rail-to-Rail Transconductance Amplifier Based on Current Generator Circuits	Transactions	Transistor Logic
		Objective: In this work, two current generator circuits are configured based on n-channel and p-channel cascode current mirrors to achieve a self-biasing topology.		
44	TVMABE236	A Low-Complexity Sensing Scheme for Approximate Matching Content- Addressable Memory	Transactions	Core Memories
		Objective: This brief presents a novel sensing approach for approximate matching content- addressable memory (CAM) designed to handle large Hamming distances (HDs) between the query pattern and stored data.		
45	TVPGBE159	A DFT-Compatible In-Situ Timing Error Detection and Correction Structure Featuring Low Area and Test Overhead	Transactions	Transistor Logic

		Objective: In this work, we propose a novel DFT- compatible EDAC structure and corresponding test methods with signal control simplification and pattern-generation complexity reduction to achieve a low area overhead and test complexity.		
46	TVPGBE160	Implementation of a Multipath Fully Differential OTA in 0.18-um CMOS Process	Transactions	Transistor Logic
		Objective: In this brief, two FVF cells are used as two nonlinear tail current sources with the capability of increasing the dynamic currents under large- signal operation, causing a high SR performance.		
47	TVMABE237	Analysis and Measurements of an Urea Biosensor Based on Instrumentation Amplifier Chip With Cross-Coupled Technique	Transactions	Transistor Logic
		Objective: In this study, a cross- coupling technique was applied to improve the characteristics of the two-stage amplifier.		
48	TVMAFE595	Area Efficient Approximate 4- 2 Compressor and Probability-Based Error Adjustment for Approximate Multiplier	Transactions	Arithmetic Core
		Objective: In this brief, we have presented a novel area efficient 4-2 compressor and a brand- new hybrid combination method of probabilistic adjustment employing approximate compressors.		

49	TVMAFE596	CAAM: Compressor-Based Adaptive Approximate Multiplier for Neural Network Applications Objective: This proposes a new multiplier architecture based on the algorithm that adapts the approximate compressor from the existing and proposed compressors' set to reduce error in the respective partial product columns.	Transactions	DSP Core
50	TVPGFE332	Simplified Compressor and Encoder Designs for Low-Cost Approximate Radix-4 Booth Multiplier Objective: To balance the generated errors for enlarging the range of approximation, we force two simplified operations to have different error directions while minimizing their hardware costs with aggressive unit-gate architectures.	Transactions	Arithmetic core
51	TVPGFE333	Two Efficient Approximate Unsigned Multipliers by Developing New Configuration for Approximate 4:2 CompressorsObjective: The paper seeks to develop approximate compressors that align positive and negative approximations for input patterns that have the same probability.	Transactions	DSP Core
52	TVMAFE597	Efficient Approximate Posit Multipliers for Deep Learning Computation	Journal	Communication

	1		1	
		Objective: To solve this cost problem, in this paper, posit multipliers with approximate computing features are proposed.		
53	TVMAFE603	A Lightweight True Random Number Generator for Root of Trust Applications	Transaction	Arithmetic core
		Objective: This work presenting a simple, yet effective, all-digital lightweight and self-testable random number generator to produce a nonce		
54	TVMAFE604	Design of Implicit Partial Product-LDPC Codes and Low Complexity Decoding Algorithm	Journal	Testing
		Objective: In this letter, we focus on the mentioned implicit partial product low-density parity- check (IP-LDPC) codes and discuss their constructions in details.		
55	TVPGFE336	Design of Optimal Multiplierless FIR Filters With Minimal Number of Adders	Transaction	DSP Core
		Objective: This work presents two novel methods that simultaneously optimize both the design of a finite impulse response (FIR) filter		
56	TVMAFE605	Design of Approximate Bilateral Filters for Image Denoising on FPGAs	Journal	DSP Core
		Objective: A novel approximate computing strategy is introduced to reduce the		

		computational complexity of the image denoising operation and to comply with realtime requirements		
57	TVPGTO936	Hybrid Protection of Digital FIR FiltersObjective:To protect filter coefficients from an adversary, efficient obfuscation techniques have been proposed, either by hiding them behind decoys or replacing them by key bits.	Transactions	DSP core
58	TVPGBE165	Scan Chain Architecture With Data Duplication for Multiple Scan Cell Fault DiagnosisObjective: In this article, a new hardware architecture with data duplication is proposed to diagnose fault locations by deliberate voltage collision even if multiple faults occur	Transaction	Transistor Logic

The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments

Surekha 5.0 $\star \star \star \star \star$

Shahed

5 star to the company for its outstanding support, new technology & support

4.5 ★ ★ ★ ★ ★ Very nice project support, the explanation

with the kit were very useful and easy to understand ..

Madhu Sudan Reddy 5.0 * * * * *

You guys always come up with exciting new technologies... impressive!!! Keep it up...

Our Customer Base

Tirupati, Andhra Pradesh-517502.

+91 90303 33433 | 0877-2261612

www.takeoffprojects.com | info@takeoffprojects.com 🛛 🗗 🖿 🥥 💌 /TakeoffEduGroup