

ACADEMIC LIVE PROJECTS 2024-25

2024 - 2025 EEE POWER SYSTEMS IEEE TITLES

TITLE ID	TITLE	DOMAIN
TEMAPS881, TEMAPE342, TEMAED243, TEPGPS871, TEPGPE309, TEPGED237,	Hybrid Compensation Based Efficient Wireless Charging System Design with Solar Photovoltaic Interface Toward Sustainable Transportation Objective: The main objective of this project, is to design an efficient wireless charging system integrated with a solar photovoltaic interface to support sustainable transportation. The focus is on improving energy transfer efficiency and ensuring reliable power delivery to electric vehicles (EVs) using renewable energy sources.	Solar Power Generation
TEMAPS883, TEPGPS873, TEMACS866, TEPGCS112, TEMAPE344, TEPGPE311	An Adaptive Fuzzy Controller-Based Distributed Voltage Control Strategy for a Remote Microgrid System With Solar Energy and Battery Support Objective: The main objective of this project is	Solar Power Generation
721 01 2011	to propose an adaptive fuzzy controller-based distributed voltage control strategy for a remote microgrid system with solar energy and battery support.	
TEMAPS878, TEPGPS868, TEMAPE341, TEPGPE308	Two-Stage Three-Phase Transformerless Hybrid Multilevel Inverter for Solar PV Application Objective: The main objective of this project, is to develop an efficient, high-performance inverter system that converts the direct current	Solar Power Generation

	(DC) from solar photovoltaic (PV) panels into	
	alternating current (AC) suitable for grid	
	integration or load supply.	
TEMAPS879,	Generalized DSC-FDC-PLL	Solar Power
TEPGPS869,	Based Synchronization of PV Array-BES	Generation
TEMACS864,	Fed Water Pump System With Utility Grid	
TEPGCS110,	Objective : The Main objective of this project is	
TEMAED242, TEPGED236	to develop and implement a generalized delayed	
1 E1 QED 230		
	signal cancellation (GDSC)-based phase-locked	
	loop (PLL) for synchronizing a photovoltaic (PV)	
	array and battery-supported water pump system	
	with the utility grid, ensuring efficient power	
	management in both grid-connected and islanded	
	modes.	
TEMAPS872,	A Capacitor Voltage Balancing Hybrid PWM	Solar Power
ТЕМАРЕЗЗ7,	Technique to Improve the Performance	Generation
TEPGPS862,	of T-Type NPC Inverters	
TEPGPE304	Objective: The main objective of this project is	
	to improve the performance of T-Type NPC	
	Inverters by using a capacitor voltage balancing	
	hybrid PWM technique.	
TEMAPS871,	GAO Optimized Sliding Mode Based	Solar Power
TEPGPS861, TEMAED240,	Reconfigurable Step Size Pb&O MPPT Controller With Grid Integrated	Generation
TEPGED234,	EV Charging Station	
TEMACS860,	21 01111 91119 011111111	
TEPGCS106	Objective: The main objective of this project is	
	to develop a GAO-optimized sliding mode-based	
	reconfigurable step size Pb&O MPPT controller	
	to maximize the efficiency of PV systems. This system will seamlessly integrate with grid-	
	connected EV charging stations, ensuring optimal	
	energy utilization and reliable 24/7 charging.	

TEMAPS868, TEMAPE334, TEMACS858, TEPGPS858, TEPGPE301, TEPGCS104	Modulated Predictive Current Control of Photovoltaic Central NPC Inverter With Reduced Computational Burden Objective: The main objective of this project is to develop and implement a modulated predictive current control strategy for a photovoltaic central NPC inverter, to enhance performance while minimizing computational demands.	Solar Power Generation
TEMAPS867, TEPGPS857, TEMAPE333, TEPGPE300	Single-Phase 15-Level Switched-Capacitor Boost Multilevel Inverter Topology for Renewable Energy Applications Objective: The main objective of this project is to provide a high-efficiency, low-cost inverter that can boost and convert DC power from renewable sources into high-quality AC power, while reducing the number of power electronic components and achieving better voltage regulation and harmonic performance.	Solar Power Generation
TEMAPS858, TEPGPS848, TEMAED238, TEPGED232	Conjugate-Gradient Based Control in a Grid-Integrated PV With 24/7 Distortion-Free Charging for Bidirectional EV Charger Objective: The main objective of this project is to optimize the power flow and enhance the efficiency of energy transfer between the grid, PV system, and EV charger. This approach aims to minimize harmonic distortions and ensure seamless charging and discharging of EV batteries, promoting reliable and sustainable energy management.	Solar Power Generation

TEMAPS864, TEMACS856, TEPGPS854, TEPGCS102, TEMAPE331, TEMAPE332, TEPGPE298, TEPGPE299	Circle Search Algorithm-Based Super Twisting Sliding Mode Control for MPPT of Different Commercial PV Modules The main objective of this project is to implement a circle search algorithm based super twisting sliding mode control for MPPT of different commercial PV modules.	Solar Power Generation
TEMAPS859, TEMACS855, TEPGPS849, TEPGCS101	A Fuzzy-Based Adaptive P&O MPPT Algorithm for PV Systems with Fast Tracking and Low Oscillations Under Rapidly Irradiance Change Conditions Objective: The main objective of this project is to get fast tracking and low oscillations under rapidly irradiance change conditions in PV system by using Fuzzy-Based adaptive P&O MPPT Algorithm.	Solar Power Generation
TEMAPS860, TEMAPS861, TEPGPS850, TEPGPS851, TEMAPE328, TEPGPE295	Voltage Feed-Forward Control of Photovoltaic Battery DC Microgrid Based on Improved Seeker Optimization Algorithm Objective: The main objective of this project is to develop a voltage feed-forward control system for a photovoltaic-battery DC microgrid, utilizing an Improved Seeker Optimization Algorithm (ISOA).	Solar Power Generation
TEMAPS856, TEPGPS846, TEMAPS857, TEPGPS847, TEMAED236, TEPGED230	A Single-Stage Bridgeless PFC Charger with Enhanced Power Quality for LEV Mounted Solar PV Panel Objective: The main objective of the project is to design a single-stage bridgeless Power Factor	Solar Power Generation

TEMAPS833, TEMAPS834, TEPGPS824, TEPGPS825, TEMACS102,	is to efficiently manage power flow from solar panels to both a high-voltage battery (HVB) and a low-voltage battery (LVB). Optimizing the use of solar energy even under partial shading conditions. Experimental Investigations on Photovoltaic Interface Neutral Point Clamped Multilevel Inverter-Based Shunt Active Power Filter to Enhance Grid Power Quality	Solar Power Generation
TEPGCS96	Objective: The main objective of this project is to enhance the power quality by using PV interfaced NPC-MLI based shunt active power filter in grid related applications.	
TEMAPS813, TEMAPS814, TEPGPS818, TEMAPS808, TEMAPS809, TEMAPS810, TEPGPS808, TEPGPS809, TEPGPS810, TEPGPS810, TEMAED218, TEPGED212	Modelling and Coordinated Control of Grid Connected Photovoltaic, Wind Turbine Driven PMSG, and Energy Storage Device for a Hybrid DC/AC Microgrid Objective: The main objective of this project is to optimize the performance and integration of grid-connected photovoltaic systems, wind-turbine driven PMSGs and energy storage devices within a hybrid dc-ac microgrid through advanced modelling and coordinated control strategies.	Solar Power Generation
TEMAPS846, TEPGPS837, TEMAPE325, TEPGPE292, TEMAED234, TEPGED228	A New Multilevel Inverter with Reduced Component Count for a Standalone Solar Energy Conversion System Objective: The main objective of this project is to propose a new multilevel inverter with reduced component count for a standalone solar energy conversion system-based application.	Solar Power Generation

TEMAPS838, TEMAPS839, TEPGPS829, TEPGPS830, TEMAPE322, TEPGPE289	Grid-Forming Voltage-Source Inverter for Hybrid Wind-Solar Systems Interfacing Weak Grids Objective: The main objective of this project is to propose a grid forming voltage source inverter for hybrid wind-solar systems interfacing weak grids.	Solar Power Generation
TEMAPS823, TEMAPS824, TEPGPS814, TEPGPS815, TEMACS100, TEPGCS94	Advance Controller for Power Quality and Performance Improvement of Grid-Connected Single-Phase Rooftop PVS Objective: The main objective of this project is to enhance power quality and to improve performance of grid-connected single phase roof top photo-voltaic systems by optimizing power output and ensuring stable, efficient integration with the grid.	Solar Power Generation
TEMAPS828, TEMAPS829, TEPGPS819, TEPGPS820	Dual Fuzzy-Sugeno Method to Enhance Power Quality Performance using a Single- phase Dual UPQC-Dual PV Without DC-Link Capacitor Objective: The main objective of this project is enhancing power quality performance superior voltage regulation and load balancing without the use of a DC-Link capacitor in Single-Phase Dual-UPQC and Dual PV.	Solar Power Generation
TEMAPS826, TEPGPS817, TEMAPE317, TEPGPE284, TEMAED222, TEPGED216	Cascaded Interleaved DC-DC Converter for a Bidirectional Electric Vehicle Charging Station Objective: The main objective of this project is to propose a cascaded interleaved DC-DC converter for a bidirectional Electric Vehicle charging station to reduce current and voltage	Solar Power Generation

	stress on the semi-conductors and passive	
	elements.	
TEMAPS825, TEPGPS816, TEMAPE314, TEMAPE315, TEPGPE281, TEPGPE282, TEMAED220, TEPGED214	Multifunctional Onboard Charger for Electric Vehicles Integrating a Low-Voltage DC-DC Converter and Solar Roof Objective: The main objective of this project is to propose a multifunctional on-board charger for electric vehicles integrating a low-voltage DC-DC converter and solar roof.	Solar Power Generation
TEMAPS807, TEPGPS807, TEMAPE304, TEPGPE276, TEMACS98, TEPGCS92	Designing of a PSO-Based Adaptive SMC With a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions Objective: The main objective of this project is to design a PSO-based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions to enhance the overall efficiency and stability of the PV system.	Solar Power Generation
TEMAPS802, TEMAED217, TEPGPS801, TEPGED211	Efficient Bidirectional Wireless Power Transfer System Control Using Dual Phase Shift PWM Technique for Electric Vehicle Applications Objective: The main objective of this project is to optimize charging efficiency and enable power from G2V and V2G by using bidirectional wireless power transfer system. It focuses on dynamic efficiency adjustments and seamless integration with EV and smart grid infrastructures.	Solar Power Generation
TEMAPS798, TEMAPS799, TEMAPS800,	Mitigating Uncertainty Problems of Renewable Energy Resources Through Efficient Integration of Hybrid Solar	Solar Power Generation

TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,		
TEMAPE300,	Objective: The main objective of this project is	
TEMAPE301,	to mitigate the problems of renewable energy resources through efficient integration of Hybrid	
TEPGPE272, TEPGPE273	Solar PV/Wind systems into power networks.	
TEMAPS801,	Design of an Extendable High Boost Multi-	Solar Power
TEPGPS800,		Generation
TEMAPE302,	Port Z-Network Converter for Small Power	
TEPGPE274	Grid-Connected PV Applications	
	Objective : The main objective of this project is	
	to propose an extendable high boost Multi-port	
	Z-Network converter for implementing in Grid	
	Connected PV Applications.	
TEMAPS795,	Enhancement of Solar PV Efficiency Using	Solar Power
TEPGPS794,	Double Integral Sliding Mode MPPT Control	Generation
TEMAPE296,		
TEPGCS89, TEMAPE221,	Objective: The main objective of this project is	
TEPGPE193,	to enhance the efficiency of Solar Photovoltaic	
TEPGPE194	(PV) Panels through the implementation of a	
	Double Integral Sliding Mode Maximum Power	
	Point Tracking (MPPT) Control Strategy.	
TEMAPS796,	Design and Analysis of Novel High-Gain	Solar Power
TEMAPE298,	Boost Converter for Renewable Energy	Generation
TEPGPS795,	Systems (RES)	
TEPGPE270		
	Objective: The main objective of this project is	
	to create and evaluate a high-gain boost converter customized for RES prioritizing efficiency and	
	performance optimization for sustainable energy	
	applications.	
	11	

TEMAPS884, TEMACS867, TEPGPS874, TEPGCS113	A Novel Coordinated Control Strategy for Frequency Regulation of MMC-HVDC Connecting Offshore Wind Farm	Wind Power Generation
	Objective: The main objective of this project is to regulate the frequency by using a novel coordinated control strategy for MMC-HVDC systems connecting offshore wind farms (OWFs)	
TEMAPS882, TEPGPS872, TEMAED244, TEPGED238, TEMAPE343, TEPGPE310	Enhancing Zero Voltage Ride Through of PMSG-Based Wind Generator With Interchange of Converter Control and Optimized Supercapacitor Energy Storage System	Wind Power Generation
	Objective: The main objective of this project is to improve the reliability and stability of wind energy systems during grid disturbances. This is achieved by optimizing the control strategy of the converter and incorporating a super-capacitor-based energy storage system.	
TEMAPS880, TEPGPS870, TEMACS865, TEPGCS111	Dual-Sequence Synchronization Stability Analysis and Control of Multi-Paralleled Wind Farms During Asymmetrical Grid Faults Objective: The main objective of this project is to implement stability assessment method and a current control strategy to achieve the margin of dual-sequence synchronization under asymmetrical grid faults.	Wind Power Generation
TEMAPS877, TEPGPS867, TEMACS862, TEPGCS108	Virtual Synchronous Generator Control Strategy of Grid-Forming Matrix Converter for Renewable Power Generation	Wind Power Generation

	Objective: The main objective of this project is	
	to enhance grid stability and mimic the inertia of	
	conventional synchronous generators. This	
	approach ensures smooth integration of	
	renewable energy sources into the power grid by	
	regulating voltage and frequency, thereby	
	improving system reliability and providing	
	support during grid disturbances.	
	support during grid distancements	
TEMAPS875,	An Ingenious Technique to Track the	Wind Power
ТЕМАРЕЗЗ9,	Maximum Power Point for a Wind Energy	Generation
TEPGPS865, TEPGPE306	System	
	Objective: The main objective of this project is	
	to develop an advanced Maximum Power Point	
	Tracking (MPPT) technique for Wind Energy	
	Conversion Systems (WECS). The goal is to	
	maximize the extraction of power from wind	
	energy systems by improving the efficiency and	
	reducing oscillations around the MPP.	
TEMAPS876,	Passive Control for Brushless Doubly-Fed	Wind Power
TEPGPS866,	Reluctance Generator Under	Generation
TEMAED241, TEPGED235	Unbalanced Grid Voltages	
	Objective: The main objective of this project is	
	to develop a passive control strategy for	
	Brushless Doubly-Fed Reluctance Generators	
	(BDFRGs) that effectively mitigates the adverse	
	effects of unbalanced grid voltages.	
TEMAPS836,	Experimental Validation of Feedback PI	Wind Power
TEPGPS827,	Controllers for Multi-Rotor Wind Energy	Generation
TEMAED228,	Conversion Systems	

TEPGED222		
	Objective: The main objective of this project is	
	to access the performance and stability analysis	
	of the controllers in real-world conditions and	
	evaluating their ability to maintain optimal rotor	
	speeds and maximize energy conversion	
	efficiency under varying wind conditions.	
TEPGPE288,	A Maximum Power Point Tracking	Wind Power
TEMAPE321,	Technique for a Wind Power System Based	Generation
TEPGPS826,	on the Trapezoidal Rule	
TEMAPS835		
	Objective: The main objective of this project is	
	to propose a maximum power point tracking	
	(MPPT) technique for a wind power system	
	based on the Trapezoidal Rule is to enhance the	
	efficiency and output of the wind turbine	
	system	
TEMAPS838,	Grid-Forming Voltage-Source Inverter for	Wind Power
TEMAPS839,	Hybrid Wind-Solar Systems Interfacing	Generation
TEPGPS829,	Weak Grids	
TEPGPS830,		
TEMAPE322,	Objective : The main objective of this project is	
TEPGPE289	to propose a grid forming voltage source inverter	
	for hybrid wind-solar systems interfacing weak	
	grids.	
TEMAPS832,	A Unidirectional Cascaded High-Power	Wind Power
TEMAPE319,	Wind Converter With Reduced Number	Generation
TEMAED227,	of Active Devices	
TEPGPS823,		
TEPGPE286,	Objective: The main objective of this project is	
TEPGED221	to reduce the number of active devices by using a	
	Unidirectional Cascaded High-Power Wind	
	Converter.	
TEMAPS844,	Coordinated Control of Grid-Connected	Wind Power
TEMAPS845,	PMSG Based Wind Energy System With	Generation
TEPGPS835,	STATCOM and Supercapacitor Energy	
TEPGPS836,	Storage	
TEMAED233,		
TEPGED227	Objective: The main objective of this project is	

	,	
	to propose a coordinated control of grid	
	connected PMSG based wind energy system with	
	STATCOM and supercapacitor energy storage	
	systems.	
TEMAPS813,	Modelling and Coordinated Control of Grid	Wind Power
TEMAPS814,	Connected Photovoltaic, Wind Turbine	Generation
TEPGPS818,	Driven PMSG, and Energy Storage Device	
TEMAPS808,	for a Hybrid DC/AC Microgrid	
TEMAPS809,		
TEMAPS810,		
TEPGPS808,	Objective: The main objective of this project	
TEPGPS809,	is to optimize the performance and integration	
TEPGPS810,	of grid-connected photovoltaic systems, wind-	
TEMAED218,	turbine driven PMSGs and energy storage	
TEPGED212	devices within a hybrid dc-ac microgrid	
	through advanced modelling and coordinated	
THE MAD DOOD O	control strategies.	Mr. ID
TEMAPS830,	Stability Analysis and Enhanced Virtual	Wind Power
TEPGPS821,	Synchronous Control for Brushless Doubly-	Generation
TEMAED225,	fed Induction Generator Based Wind	
TEPGED219	Turbines	
	Objective: The main objective of this project is	
	to analyze the stability and propose the virtual	
	synchronous control for Brushless Doubly-fed	
	Induction Generator Based Wind Turbines.	
TEMAPS798,	Mitigating Uncertainty Problems of	Wind Power
TEMAPS799,	Renewable Energy Resources Through	Generation
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,		
TEMAPE300,	Objective: The main objective of this project	
TEMAPE301,	is to mitigate the problems of renewable	
TEPGPE272, TEPGPE273	energy resources through efficient integration	

	of Hybrid Solar PV/Wind systems into power	
	networks.	
TEMAPS873,	Optimized PI Gain in UPQC Control Based	Power Quality
TEPGPS863,	on Improved Zero Attracting Normalized	
TEMACS861, TEPGCS107	LMS	
	Objective: The main objective of this project	
	is developing an enhanced control scheme for	
	a 4-wire unified power quality conditioner	
	(UPQC) using the improved reweighted zero	
	Attracting normalized LMS (IRZA-NLMS) and	
	self-adaptive multi population Rao (SAMP-	
	Rao) optimization to effectively mitigate	
	power quality issues.	
TEMAPS862,	Improving Active Resonance Damping and	Power Quality
TEPGPS852, TEMAPE330,	Unbalanced Voltage Mitigation Based on	
TEPGPE297,	Combined DDSRF and Washout Filter	
TEMAPS863, TEPGPS853	in Islanded Microgrids	
	Objective: The main objective of this project is to	
	develop and implement a combined approach using	
	Double Decoupled Synchronous Reference Frame	
	(DDSRF) and Washout Filter techniques to enhance	
	active resonance damping and mitigate unbalanced	
	voltage conditions in islanded microgrids. This combined approach aims to improve the stability,	
	reliability, and power quality of islanded microgrids,	
	ensuring efficient and continuous operation under	
	varying load and generation conditions.	
TEMAPS856,	A Single-Stage Bridgeless PFC Charger with	Power Quality
TEPGPS846,	Enhanced Power Quality for LEV Mounted	

TEMAPS857,	Solar PV Panel	
TEPGPS847, TEMAED236,	Objective: The main objective of the project is	
TEPGED230	to design a single-stage bridgeless Power Factor	
	Correction (PFC) charger that enhances power	
	quality for solar photovoltaic (PV) panels	
	installed on light electric vehicles (LEVs). This integrated approach optimizes efficiency,	
	minimizes power losses.	
TEMACS853,	An Advanced Control Strategy for a Weak	Power Quality
TEMAPS851,	Grid-Connected DG for Enhancing Voltage	
TEPGPS842,	Support During Co-occurrence of Sag and	
TEPGCS99	Swell	
	Objective: The main objective of this project is	
	advanced control strategy for a weak grid-	
	connected DG system is to ensure stable	
	operation, enhance voltage support, and improve	
	overall power quality during sag and swell events. By achieving these, strategy contributes	
	to reliable and efficient integration of DG into the	
	grid, supporting sustainable energy practices and	
	enhancing grid resilience.	
TEMAPS855,	Three-Phase Grid Connected Shunt Active	Power Quality
TEPGPS843, TEMAPS853,	Power Filter Based on Adaptive Q-LMF	
TEPGPS844	Control Technique	
121 01 00 11		
	Objective: The main objective of this project is	
	to improve power quality in dynamic conditions	
	in Three-Phase grid connected applications by	
	using SAPF based on Q-LMF control Technique.	
TEMACS104,	Predictive Control of PMSG-Based Hydro-	Power Quality
TEPGCS98,	Electric System with Battery Supported	
TEMAPE324,	UPQC	
TEPGPE291, TEMAPS843,	Objective: The main objective of this project is	
	g Jill II I I I I I I I I	

TEPGPS834	to propose a predictive control to achieve	
1 L1 d1 3034		
	generation and distribution from the PMSG-	
	based hydro-electric system, supplemented by the	
	battery-supported UPQC	
TEPGCS97,	Enhanced the Hosting Capacity of a	Power Quality
TEMACS103,	Photovoltaic Solar System Through the	
TEPGPS832,	Utilization of a Model Predictive Controller	
TEMAPS841	Objectives The main chiestive of this preject is	
	Objective: The main objective of this project is	
	to enhance the hosting capacity of a photovoltaic	
	solar system by utilizing a Model Predictive	
	Controller (MPC) to efficiently manage power	
	flow, thereby maximizing the integration of	
	renewable energy.	
	renewasie energy.	
TEMAPS833,	Experimental Investigations on	Power Quality
TEMAPS834,	Photovoltaic Interface Neutral Point	1 ower quanty
TEPGPS824,	Clamped Multilevel Inverter-Based Shunt	
TEPGPS825,	Active Power Filter to Enhance Grid Power	
TEMACS102,	Quality	
TEPGCS96		
	Objective: The main objective of this project is	
	to enhance the power quality by using PV	
	interfaced NPC-MLI based shunt active power	
TEMAPS823,	filter in grid related applications. Advance Controller for Power Quality and	Power Quality
TEMAPS823,	Performance Improvement of Grid-	Tower Quality
TEPGPS814,	Connected Single-Phase Rooftop PVS	
TEPGPS815,		
TEMACS100,	Objective: The main objective of this project	
TEPGCS94	is to enhance power quality and to improve	
	performance of grid-connected single phase	
	roof top photo-voltaic systems by optimizing	
	power output and ensuring stable, efficient	
	integration with the grid.	

TEMAPS817, TEPGPS813	Power Quality Improvement in Commercial and Industrial Sites: An Integrated Approach Mitigating Power Oscillations Objective: The main objective of this project is to develop advanced control strategies and state of the art technologies to stabilize voltage and frequency, reduce oscillations, and ensure a reliable and efficient power supply, ultimately improving operational efficiency and minimizing downtime.	Power Quality
TEMAPS828, TEMAPS829, TEPGPS819, TEPGPS820	Dual Fuzzy-Sugeno Method to Enhance Power Quality Performance using a Single- phase Dual UPQC-Dual PV Without DC-Link Capacitor Objective: The main objective of this project is enhancing power quality performance superior voltage regulation and load balancing without the use of a DC-Link capacitor in Single-Phase Dual-UPQC and Dual PV. Coordinated Control of Grid-Connected	Power Quality Power Quality
TEMAPS845, TEPGPS835, TEPGPS836, TEMAED233, TEPGED227	PMSG Based Wind Energy System with STATCOM and Supercapacitor Energy Storage Objective: The main objective of this project is to propose a coordinated control of grid connected PMSG based wind energy system with STATCOM and supercapacitor energy storage systems.	rower Quanty
TEMAPS803, TEPGPS802	Voltage Sag, Swell, and Interruption Compensation Using DVR Based on Energy Storage Device	Power Quality

	Objective: The main objective of this project is	
	to compensate voltage sag and swell by using	
	DVR based on Energy Storage Device.	
TEMAPS804, TEMACS97, TEPGPS804,	Small Signal Modeling and Performance Analysis of Conventional- and Dual-UPQC	Power Quality
TEPGCS91	Objective: The main objective of this project is	
	to analyze the performance of conventional and	
	Dual-UPQC in a grid connected system.	
TEMAPS865,	Smooth and Uninterrupted Operation of	
TEPGPS855, TEMAPS866, TEPGPS856,	Standalone DC Microgrid Under High and Low Penetration of RESs	Hybrid Systems
TEMACS857,	Objective: The main objective of the project to	
TEPGCS103	ensure that a standalone DC microgrid operates seamlessly and without interruption, regardless of	
	the fluctuations in Renewable Energy Sources (RESs). This involves maintaining a stable power	
	supply in spite of varying levels of RES	
	penetration.	
TEPGPS841,	Grid-Interactive Smooth Transition Control	Hybrid Systems
TEPGPS840, TEMAPS850, TEMAPS849	of Wind-Solar-DG Based Microgrid at Unpredictable Weather Conditions	
TEMM 5015	Objective: The main objective of the project is to	
	develop a reliable microgrid system integrating	
	wind, solar, and diesel generator (DG) power	
	sources to ensure continuous power supply	
	during both on-grid and off-grid modes in	
	Unpredictable Weather Conditions.	
TEMAPS831,	HESS management for Virtual Inertia,	Hybrid Systems
TEPGPS822,	Frequency and Voltage Support through	
TEMAED226, TEPGED220	Off-board EV Bidirectional Chargers	

	Objective: The main objective of this project is to enhance grid stability by dynamically balancing power supply and demand, providing rapid frequency response and maintaining voltage levels.	
TEMAPS813,	Modelling and Coordinated Control of Grid	Hybrid Systems
TEMAPS814,	Connected Photovoltaic, Wind Turbine	
TEPGPS818,	Driven PMSG, and Energy Storage Device	
TEMAPS808,	for a Hybrid DC/AC Microgrid	
TEMAPS809,		
TEMAPS810,		
TEPGPS808,	Objective: The main objective of this project	
TEPGPS809,	is to optimize the performance and integration	
TEPGPS810,	of grid-connected photovoltaic systems, wind-	
TEMAED218,	turbine driven PMSGs and energy storage	
TEPGED212	devices within a hybrid dc-ac microgrid	
	through advanced modelling and coordinated	
TEMADO700	control strategies.	Harbarid Caratama
TEMAPS798,	Mitigating Uncertainty Problems of	Hybrid Systems
TEMAPS799, TEMAPS800,	Renewable Energy Resources Through Efficient Integration of Hybrid Solar	
TEPGPS797,	Efficient Integration of Hybrid Solar PV/Wind Systems Into Power Networks	
TEPGPS798,	r v/ wind systems into rower networks	
TEPGPS798,		
TEMAPE300,	Objective: The main objective of this project is	
TEMAPE301,	to mitigate the problems of renewable energy	
TEPGPE272,	resources through efficient integration of Hybrid	
TEPGPE273	Solar PV/Wind systems into power networks.	
TEMAPS874,	An Unbalance and Power Controller	Microgrid
TEPGPS864,	Allowing Smooth Islanded Transitions in	
TEMAPE338,	Three-Phase Microgrids	
TEPGPE305		
	Objective: The main objective of this project is	
	to develop a power controller for seamless	
	islanded transitions in three-phase microgrids,	
	ensuring stable voltage and frequency during	
	grid-to-island mode shifts.	

TEMAPS865, TEPGPS855, TEMAPS866, TEPGPS856, TEMACS857, TEPGCS103	Smooth and Uninterrupted Operation of Standalone DC Microgrid Under High and Low Penetration of RESs Objective: The main objective of the project to ensure that a standalone DC microgrid operates seamlessly and without interruption, regardless of the fluctuations in Renewable Energy Sources (RESs). This involves maintaining a stable power supply in spite of varying levels of RES penetration.	Microgrid
TEMAPS862, TEPGPS852, TEMAPE330, TEPGPE297, TEMAPS863,	Improving Active Resonance Damping and Unbalanced Voltage Mitigation Based on Combined DDSRF and Washout Filter in Islanded Microgrids	Microgrid
TEPGPS853	Objective: The main objective of this project is to develop and implement a combined approach using Double Decoupled Synchronous Reference Frame (DDSRF) and Washout Filter techniques to enhance active resonance damping and mitigate unbalanced voltage conditions in islanded microgrids. This combined approach aims to improve the stability, reliability, and power quality of islanded microgrids, ensuring efficient and continuous operation under varying load and generation conditions.	
TEMAPS860, TEMAPS861, TEPGPS850, TEPGPS851, TEMAPE328, TEPGPE295	Voltage Feed-Forward Control of Photovoltaic Battery DC Microgrid Based on Improved Seeker Optimization Algorithm Objective: The main objective of this project is to develop a voltage feed-forward control system for a photovoltaic-battery DC microgrid, utilizing an Improved Seeker Optimization Algorithm (ISOA).	Microgrid

TEPGPS841, TEPGPS840, TEMAPS850, TEMAPS849	Grid-Interactive Smooth Transition Control of Wind-Solar-DG Based Microgrid at Unpredictable Weather Conditions Objective: The main objective of the project is to develop a reliable microgrid system integrating wind, solar, and diesel generator (DG) power sources to ensure continuous power supply during both on-grid and off-grid modes in Unpredictable Weather Conditions.	Microgrid
TEPGPS839, TEMAPS848, TEPGPS838, TEMAPS847	Active Power Sharing Scheme in a PV Integrated DC Microgrid With Composite Energy Storage Devices	Microgrid
	Objective: The main objective of this project is to optimize power distribution among storage systems to enhance stability and efficiency. This ensures balanced power output, improved system reliability, and voltage stability.	
TEMACS99, TEPGCS93, TEMAPS811, TEPGPS811	Impedance Model Based Coordination Control of Secondary Ripple in DC Microgrid Objective: The main objective of this project is to develop a continuous coordination control method based on impedance models for mitigating secondary ripple in DC Microgrids	Microgrid
TEMAPS837, TEPGPS828, TEMAED229, TEPGED223	Analysis of Renewable Energy Sources and Electrical Vehicles Integration Into Microgrid Objective: The main objective of this project is to analyze how the renewable energy sources and electric vehicles are responding to load changes at grid.	Microgrid

2024 - 2025 EEE Control Systems IEEE TITLES

TITLE ID	TITLE	DOMAIN
TEMAPS884, TEMACS867, TEPGPS874, TEPGCS113	A Novel Coordinated Control Strategy for Frequency Regulation of MMC-HVDC Connecting Offshore Wind Farm Objective: The main objective of this project is to regulate the frequency by using a novel coordinated control strategy for MMC-HVDC systems connecting offshore wind farms	Control Systems
TEMAPS880, TEPGPS870, TEMACS865, TEPGCS111	(OWFs) Dual-Sequence Synchronization Stability Analysis and Control of Multi-Paralleled Wind Farms During Asymmetrical Grid Faults	Control Systems
	Objective: The main objective of this project is to implement stability assessment method and a current control strategy to achieve the margin of dual-sequence synchronization under asymmetrical grid faults.	
TEMAPS883, TEPGPS873, TEMACS866, TEPGCS112, TEMAPE344, TEPGPE311	An Adaptive Fuzzy Controller-Based Distributed Voltage Control Strategy for a Remote Microgrid System With Solar Energy and Battery Support Objective: The main objective of this project is to propose an adaptive fuzzy controller-based distributed voltage control strategy for a remote microgrid system with solar energy and battery support.	Control Systems
TEMAPS879, TEPGPS869, TEMACS864, TEPGCS110,	Generalized DSC-FDC-PLL Based Synchronization of PV Array-BES Fed Water Pump System With Utility Grid	Control Systems

TEMAED242, TEPGED236	Objective: The Main objective of this project is to develop and implement a generalized delayed signal cancellation (GDSC)-based phase-locked loop (PLL) for synchronizing a photovoltaic (PV) array and battery-supported water pump system with the utility grid, ensuring efficient power management in both grid-connected and islanded modes.	
TEMACS863, TEMAPE340, TEPGCS109, TEPGPE307	Adaptive Control for Improved Virtual Synchronous Generator Under Imbalanced Grid Voltage Objective: The main objective of this project is to develop an adaptive control strategy for a Virtual Synchronous Generator (VSG) that enhances performance and stability under imbalanced grid voltage conditions.	Control Systems
TEMAPS877, TEPGPS867, TEMACS862, TEPGCS108	Virtual Synchronous Generator Control Strategy of Grid-Forming Matrix Converter for Renewable Power Generation Objective: The main objective of this project is to enhance grid stability and mimic the inertia of conventional synchronous generators. This approach ensures smooth integration of renewable energy sources into the power grid by regulating voltage and frequency, thereby improving system reliability and providing support during grid disturbances.	Control Systems
TEMAPS873, TEPGPS863, TEMACS861, TEPGCS107	Optimized PI Gain in UPQC Control Based on Improved Zero Attracting Normalized LMS	Control Systems

	Objective: The main objective of this project is developing an enhanced control scheme for a 4-wire unified power quality conditioner (UPQC) using the improved reweighted zero Attracting normalized LMS (IRZA-NLMS) and self-adaptive multi population Rao (SAMP-Rao) optimization to effectively mitigate power quality issues.	
TEMAPS871,	GAO Optimized Sliding Mode Based	Control Systems
TEPGPS861,	Reconfigurable Step Size Pb&O MPPT	
TEMAED240,	Controller With Grid Integrated	
TEPGED234,	EV Charging Station	
TEMACS860,		
TEPGCS106	Objective: The main objective of this project is	
	to develop a GAO-optimized sliding mode-based	
	reconfigurable step size Pb&O MPPT controller	
	to maximize the efficiency of PV systems. This	
	system will seamlessly integrate with grid-	
	connected EV charging stations, ensuring optimal energy utilization and reliable 24/7 charging.	
TEMAPS868,	Modulated Predictive Current Control of	Control Systems
TEMAPE334,	Photovoltaic Central NPC Inverter With	Control Systems
TEMACS858,	Reduced Computational Burden	
TEPGPS858,	Reduced computational burden	
TEPGPE301,	Objective: The main objective of this project is	
TEPGCS104	to develop and implement a modulated predictive	
121 000101	current control strategy for a photovoltaic central	
	NPC inverter, to enhance performance while	
	minimizing computational demands.	
TEMACS859,	Grid-Connected Converter with Grid-	Control Systems
TEPGCS105,	Forming and Grid-Following Modes	
ТЕМАРЕЗЗ5,	Presenting Symmetrical and Asymmetrical	
TEPGPE302	Fault Ride-Through Capability	
	Objective: The main objective of this project is	
	to propose a grid-connected converter with grid-	
	forming and grid following modes presenting	
	symmetrical and asymmetrical fault ride-through	

	capability.	
TEMAPS865, TEPGPS855, TEMAPS866, TEPGPS856, TEMACS857, TEPGCS103	Smooth and Uninterrupted Operation of Standalone DC Microgrid Under High and Low Penetration of RESs Objective: The main objective of the project to ensure that a standalone DC microgrid operates seamlessly and without interruption, regardless of the fluctuations in Renewable Energy Sources (RESs). This involves maintaining a stable power	Control Systems
TEMAPS859, TEMACS855, TEPGPS849, TEPGCS101	supply in spite of varying levels of RES penetration. A Fuzzy-Based Adaptive P&O MPPT Algorithm for PV Systems with Fast Tracking and Low Oscillations Under Rapidly Irradiance Change Conditions	Control Systems
	Objective: The main objective of this project is to get fast tracking and low oscillations under rapidly irradiance change conditions in PV system by using Fuzzy-Based adaptive P&O MPPT Algorithm.	
TEMAPS864, TEMACS856, TEPGPS854, TEPGCS102, TEMAPE331, TEMAPE332, TEPGPE298, TEPGPE299	Circle Search Algorithm-Based Super Twisting Sliding Mode Control for MPPT of Different Commercial PV Modules The main objective of this project is to implement a circle search algorithm based super twisting sliding mode control for MPPT of different commercial PV modules.	Control Systems
TEMACS853, TEMAPS851, TEPGPS842, TEPGCS99	An Advanced Control Strategy for a Weak Grid-Connected DG for Enhancing Voltage Support During Co-occurrence of Sag and Swell Objective: The main objective of this project is	Control Systems

	advanced control strategy for a weak grid- connected DG system is to ensure stable operation, enhance voltage support, and improve overall power quality during sag and swell events. By achieving these, strategy contributes to reliable and efficient integration of DG into the grid, supporting sustainable energy practices and enhancing grid resilience.	
TEMAPS854,	Improved Photovoltaic MPPT Algorithm	Control Systems
TEMACS854,	Based on Ant Colony Optimization and	
TEPGPS845,	Fuzzy Logic Under Conditions of Partial	
TEPGCS100	Shading	
	Objective: The main objective of this project is	
	to get the improved performance from PV array by using the AFO based MPPT algorithm under	
	partial shading conditions.	
TEMACS104,	Predictive Control of PMSG-Based Hydro-	Control Systems
TEPGCS98,	Electric System with Battery Supported	Control Systems
TEMAPE324,	UPQC	
TEPGPE291,	01 40	
TEMAPS843,	Objective: The main objective of this project is	
TEPGPS834	to propose a predictive control to achieve	
	efficient, stable, and high-quality power	
	generation and distribution from the PMSG-	
	based hydro-electric system, supplemented by the	
	battery-supported UPQC	
TEPGCS97,	Enhanced the Hosting Capacity of a	Control Systems
TEMACS103,	Photovoltaic Solar System Through the	
TEPGPS832,	Utilization of a Model Predictive Controller	
TEMAPS841		
	Objective: The main objective of this project is	
	to enhance the hosting capacity of a photovoltaic	
	solar system by utilizing a Model Predictive	
	Controller (MPC) to efficiently manage power	
	flow, thereby maximizing the integration of	
	renewable energy.	

TEMAPE320, TEPGPE287, TEMACS101, TEPGCS95	Sliding Mode Control of Vienna Rectifier Under Unbalanced Weak Power Grid Objective: The main objective of this project is to control the Vienne Rectifier by using Sliding Mode Controller under unbalanced weak power grid.	Control Systems
TEMAPS833, TEMAPS834, TEPGPS824, TEPGPS825, TEMACS102, TEPGCS96	Experimental Investigations on Photovoltaic Interface Neutral Point Clamped Multilevel Inverter-Based Shunt Active Power Filter to Enhance Grid Power Quality Objective: The main objective of this project is to enhance the power quality by using PV interfaced NPC-MLI based shunt active power filter in grid related applications.	Control Systems
TEMAPS823, TEMAPS824, TEPGPS814, TEPGPS815, TEMACS100, TEPGCS94	Advance Controller for Power Quality and Performance Improvement of Grid-Connected Single-Phase Rooftop PVS Objective: The main objective of this project is to enhance power quality and to improve performance of grid-connected single phase roof top photo-voltaic systems by optimizing power output and ensuring stable, efficient integration with the grid.	Control Systems
TEMAPS804, TEMACS97, TEPGPS804, TEPGCS91	Small Signal Modeling and Performance Analysis of Conventional- and Dual-UPQC Objective: The main objective of this project is to analyze the performance of conventional and Dual-UPQC in a grid connected system.	Control Systems

TEMAPS807, TEPGPS807, TEMAPE304, TEPGPE276, TEMACS98, TEPGCS92	Designing of a PSO-Based Adaptive SMC With a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions Objective: The main objective of this project is to design a PSO-based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions to enhance the overall efficiency and stability of the PV system.	Control Systems
TEMAPS795, TEPGPS794, TEMAPE296, TEPGCS89, TEMAPE221, TEPGPE193, TEPGPE194	Double Integral Sliding Mode MPPT Control Objective: The main objective of this project is to enhance the efficiency of Solar Photovoltaic (PV) Panels through the implementation of a Double Integral Sliding Mode Maximum Power Point Tracking (MPPT) Control Strategy.	Control Systems
TEMACS99, TEPGCS93, TEMAPS811, TEPGPS811	Impedance Model Based Coordination Control of Secondary Ripple in DC Microgrid Objective: The main objective of this project is to develop a continuous coordination control method based on impedance models for mitigating secondary ripple in DC Microgrids	Control Systems

2024 - 2025 EEE POWER ELECTRONICS IEEE TITLES

S.NO	TITLE	DOMAIN
ТЕМАРЕ327,	Multifunctional Integrated DC-DC	DC-DC
TEMAED237,	Converter for Electric Vehicles	Converters
TEPGPE294,		
TEPGED231	Objective: The main objective of this project is	
	to develop a single integrated DC-DC converter	
	that can perform multiple functions (G2V, V2G,	
	and LDC modes) efficiently, reducing the	
	number of components, complexity, and overall	
	cost, while improving the performance and	
	reliability of power conversion in electric vehicles	
TEMAPS864,	Circle Search Algorithm-Based Super	DC-DC
TEMACS856,	Twisting Sliding Mode Control for MPPT of	Converters
TEPGPS854,	Different Commercial PV Modules	
TEPGCS102,		
ТЕМАРЕЗЗ1,	The main objective of this project is to	
ТЕМАРЕЗЗ2,	implement a circle search algorithm based super	
TEPGPE298,	twisting sliding mode control for MPPT of	
TEPGPE299	different commercial PV modules.	
TEMAPS860,	Voltage Feed-Forward Control of	DC-DC
TEMAPS861,	Photovoltaic Battery DC Microgrid Based	Converters
TEPGPS850,	on Improved Seeker Optimization	
TEPGPS851,	Algorithm	
ТЕМАРЕ328,		
TEPGPE295	Objective: The main objective of this project is	
	to develop a voltage feed-forward control system	
	for a photovoltaic-battery DC microgrid, utilizing	
	an Improved Seeker Optimization Algorithm	
	(ISOA).	
TEMAPE326,	A Boost-LC Resonance Multimode DC-DC	DC-DC
TEMAED235,	Converter for EV Charger Application	Converters
TEPGPE293,	Objections The second of the College	
TEPGED229	Objective: The main objective of this project is	
	to achieve high efficiency, high voltage gain, and	
	a wide output voltage range while overcoming	

	the limitations of conventional full-bridge (FB)	
	LLC resonant converters.	
TEPGPE288,	A Maximum Power Point Tracking	DC-DC
ТЕМАРЕЗ21,	Technique for a Wind Power System Based	Converters
TEPGPS826,	on the Trapezoidal Rule	
TEMAPS835		
	Objective: The main objective of this project is	
	to propose a maximum power point tracking	
	(MPPT) technique for a wind power system	
	based on the Trapezoidal Rule is to enhance the	
	efficiency and output of the wind turbine	
	system	
TEMAPS795,	Enhancement of Solar PV Efficiency Using	DC-DC
TEPGPS794,	Double Integral Sliding Mode MPPT Control	Converters
TEMAPE296,		
TEPGCS89,	Objective: The main objective of this project is	
TEMAPE221,	to enhance the efficiency of Solar Photovoltaic	
TEPGPE193, TEPGPE194	(PV) Panels through the implementation of a	
TEPUPE194	Double Integral Sliding Mode Maximum Power	
	Point Tracking (MPPT) Control Strategy.	
TEMAPS825,	Multifunctional Onboard Charger for	DC-DC
TEPGPS816,	Electric Vehicles Integrating a Low-Voltage	Converters
TEMAPE314,	DC-DC Converter and Solar Roof	
TEMAPE315,		
TEPGPE281,	Objective: The main objective of this project is	
TEPGPE282,		
TEMAED220, TEPGED214	to propose a multifunctional on-board charger for	
TEI GEDZ 14	electric vehicles integrating a low-voltage DC-	
	DC converter and solar roof.	
TEMAPS826,	Cascaded Interleaved DC-DC Converter for	DC-DC
TEPGPS817,	a Bidirectional Electric Vehicle Charging	Converters
TEMAPE317,	Station	
TEPGPE284,	Objective: The main objective of this project is	
TEMAED222,	Objective: The main objective of this project is to propose a cascaded interleaved DC-DC	
TEPGED216	to propose a cascaded interleaved DC-DC	

	converter for a bidirectional Electric Vehicle	
	charging station to reduce current and voltage	
	stress on the semi-conductors and passive	
	elements.	
TEMAPS796,	Design and Analysis of Novel High-Gain	DC-DC
TEMAI 57 90,	Boost Converter for Renewable Energy	Converters
TEPGPS795,	Systems (RES)	Converters
TEPGPE270	Systems (RES)	
	Objective: The main objective of this project is	
	to create and evaluate a high-gain boost converter	
	customized for RES prioritizing efficiency and	
	performance optimization for sustainable energy	
	applications.	
ТЕМАРЕ316,	New Integrated DC-DC Conversion	DC-DC
TEPGPE283,	System for Electric Vehicles	Converters
TEMAED221,		
TEPGED215	Objective: The main objective of this project is	
	to propose a new integrated DC-DC conversion	
	system for Electric Vehicles to reduce the	
	components as well as power losses.	
TEMAPS882,	Enhancing Zero Voltage Ride Through of	AC-DC
TEPGPS872,	PMSG-Based Wind Generator With	Converters
TEMAED244,	Interchange of Converter Control	
TEPGED238,	and Optimized Supercapacitor	
ТЕМАРЕЗ43,	Energy Storage System	
TEPGPE310		
	Objective: The main objective of this project is	
	to improve the reliability and stability of wind	
	energy systems during grid disturbances. This is	
	achieved by optimizing the control strategy of the	
	converter and incorporating a super-capacitor-	
	based energy storage system.	
TEMAPS875,	An Ingenious Technique to Track the	AC-DC
ТЕМАРЕЗЗ9,	Maximum Power Point for a Wind Energy	Converters
TEPGPS865,	System	
TEPGPE306		

	Objective: The main objective of this project is to develop an advanced Maximum Power Point Tracking (MPPT) technique for Wind Energy Conversion Systems (WECS). The goal is to maximize the extraction of power from wind energy systems by improving the efficiency and reducing oscillations around the MPP.	
TEMAPE320,	reducing oscillations around the MPP. Sliding Mode Control of Vienna Rectifier	AC-DC
TEPGPE287,	Under Unbalanced Weak Power Grid	Converters
TEMACS101,	Under Unbalanced Weak I Ower drid	Converters
TEPGCS95	Objective: The main objective of this project is	
111 00075	to control the Vienne Rectifier by using Sliding	
	Mode Controller under unbalanced weak power	
	grid.	
TEMAPE318,	Coordinated Control Strategy for Cascaded	AC-DC
TEPGPE285,	Current-Source Converter Under	Converters
TEMAED223,	Unbalanced Grid Voltage	
TEPGED217		
	Objective: The main objective of this project is	
	to ensure stable and efficient operation by	
	mitigating the effects of voltage unbalance,	
	maintaining power quality and enhancing system	
	reliability.	
TEMAPS798,	Mitigating Uncertainty Problems of	AC-DC
TEMAPS799,	Renewable Energy Resources Through	Converters
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,		
TEMAPE300,	Objective: The main objective of this project is	
TEMAPE301,	to mitigate the problems of renewable energy resources through efficient integration of Hybrid	
TEPGPE272, TEPGPE273	Solar PV/Wind systems into power networks.	
	Ţ	AC DC
TEMAED219, TEMAPE313,	An LLC-Based Single-Stage Step-Up AC/DC Resonant Converter Without Boost Circuit	AC-DC Converters
TEPGED213,	for EV Charging With High Power Factor	Converters
TEPGED213,	ioi Ly charging with high I owel ractor	
1 L1 G1 L200	Objective: The main objective of this project is	
	Objective: The main objective of this project is to develop a highly efficient, cost-effective and	

	simplified power conversion solution that	
	integrates power factor correction (PFC) and DC-	
	DC Conversion into a single stage specifically	
	designed for EV charging related applications.	
TEMAPS825,	Multifunctional Onboard Charger for	AC-DC
TEPGPS816,	Electric Vehicles Integrating a Low-Voltage	Converters
TEMAPE314,	DC-DC Converter and Solar Roof	
TEMAPE315,		
TEPGPE281,		
TEPGPE282,	Objective: The main objective of this project is	
TEMAED220,	to propose a multifunctional on-board charger for	
TEPGED214	electric vehicles integrating a low-voltage DC-	
	DC converter and solar roof.	
TEMAPS838,	Grid-Forming Voltage-Source Inverter for	AC-DC
TEMAPS839,	Hybrid Wind-Solar Systems Interfacing	Converters
TEPGPS829,	Weak Grids	
TEPGPS830,		
TEMAPE322,	Objective : The main objective of this project is	
TEPGPE289	to propose a grid forming voltage source inverter	
	for hybrid wind-solar systems interfacing weak	
	grids.	
TEMAPS883,	An Adaptive Fuzzy Controller-Based	DC-AC
TEPGPS873,	Distributed Voltage Control Strategy for a	Converters
TEMACS866,	Remote Microgrid System With Solar	
TEPGCS112,	Energy and Battery Support	
TEMAPE344,		
TEPGPE311	Objective : The main objective of this project is	
	to propose an adaptive fuzzy controller-based	
	distributed voltage control strategy for a remote	
	microgrid system with solar energy and battery	
	support.	
TEMAPS881,	Hybrid Compensation Based Efficient	DC-AC
TEMAPE342,	Wireless Charging System Design with	Converters
TEMAED243,	Solar Photovoltaic Interface Toward	
TEPGPS871,	Sustainable Transportation	
TEPGPE309,		
TEPGED237,	Objective: The main objective of this project, is	
	to design an efficient wireless charging system	

	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	integrated with a solar photovoltaic interface to	
	support sustainable transportation. The focus is	
	on improving energy transfer efficiency and	
	ensuring reliable power delivery to electric	
	vehicles (EVs) using renewable energy sources.	
TEMACS863,	Adaptive Control for Improved Virtual	DC-AC
ТЕМАРЕЗ40,	Synchronous Generator Under Imbalanced	Converters
TEPGCS109,	Grid Voltage	
TEPGPE307	Objectives The main chiestive of this project is	
	Objective: The main objective of this project is	
	to develop an adaptive control strategy for a	
	Virtual Synchronous Generator (VSG) that	
	enhances performance and stability under	
	imbalanced grid voltage conditions.	
TEMAPS864,	Circle Search Algorithm-Based Super	DC-AC
TEMACS856,	Twisting Sliding Mode Control for MPPT of	Converters
TEPGPS854,	Different Commercial PV Modules	
TEPGCS102,		
ТЕМАРЕЗЗ1,	The main objective of this project is to	
ТЕМАРЕЗЗ2,	implement a circle search algorithm based super	
TEPGPE298,	twisting sliding mode control for MPPT of	
TEPGPE299	different commercial PV modules.	
TEPGED224,	Hybrid Control Method of Full-Bridge	DC-AC
TEPGPE290,	LLC Resonant Converter Based on Electric	Converters
TEMAED230,	Vehicle	
TEMAPE323		
	Objective: The main objective of this project is	
	to optimizing its performance for electric vehicle	
	applications by enhancing efficiency and	
	stability. This involves integrating advanced	
	control techniques to improve power conversion	
	and reliability.	

TEMACS859,	Grid-Connected Converter with Grid-	DC-AC
TEPGCS105,	Forming and Grid-Following Modes	Converters
TEMAPE335,	Presenting Symmetrical and Asymmetrical	3011, 01 0015
TEPGPE302	Fault Ride-Through Capability	
121 01 2002	Tunio IIII o ugii cupusiio,	
	Objective: The main objective of this project is	
	to propose a grid-connected converter with grid-	
	forming and grid following modes presenting	
	symmetrical and asymmetrical fault ride-through	
	capability.	
TEMAPS862,	Improving Active Resonance Damping and	DC-AC
TEPGPS852,	Unbalanced Voltage Mitigation Based on	Converters
TEMAPE330, TEPGPE297,	Combined DDSRF and Washout Filter	
TEMAPS863,	in Islanded Microgrids	
TEPGPS853		
	Objective: The main objective of this project is	
	to develop and implement a combined approach	
	using Double Decoupled Synchronous Reference	
	Frame (DDSRF) and Washout Filter techniques	
	to enhance active resonance damping and	
	mitigate unbalanced voltage conditions in	
	islanded microgrids. This combined approach	
	aims to improve the stability, reliability, and	
	power quality of islanded microgrids, ensuring	
	efficient and continuous operation under varying	
	load and generation conditions.	
TEMACS104,	Predictive Control of PMSG-Based Hydro-	DC-AC
TEPGCS98,	Electric System with Battery Supported	Converters
TEMAPE324,	UPQC	
TEPGPE291,		
TEMAPS843,	Objective: The main objective of this project is	
TEPGPS834	to propose a predictive control to achieve	
	efficient, stable, and high-quality power	
	generation and distribution from the PMSG-	
	based hydro-electric system, supplemented by the	
TEM A DC700	battery-supported UPQC Mitigating Uncertainty Problems of	DC AC
TEMAPS798,	Mitigating Uncertainty Problems of Renewable Energy Resources Through	DC-AC
TEMAPS799,	Renewable Energy Resources Through	Converters

TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,	.,	
TEPGPS799,		
TEMAPE300,	Objective: The main objective of this project is	
TEMAPE301,	to mitigate the problems of renewable energy	
TEPGPE272,	resources through efficient integration of Hybrid	
TEPGPE273	Solar PV/Wind systems into power networks.	
TEMAPS878,	Two-Stage Three-Phase Transformerless	Multilevel
TEPGPS868,	Hybrid Multilevel Inverter for Solar PV	Inverters
TEMAPE341,	Application	my or corb
TEPGPE308		
121 01 2000	Objective: The main objective of this project, is	
	to develop an efficient, high-performance	
	inverter system that converts the direct current	
	(DC) from solar photovoltaic (PV) panels into	
	alternating current (AC) suitable for grid	
	integration or load supply.	
TEMAPS872,	A Capacitor Voltage Balancing Hybrid PWM	Multilevel
ТЕМАРЕЗЗ7,	Technique to Improve the Performance	Inverters
TEPGPS862,	of T-Type NPC Inverters	
TEPGPE304		
	Objective: The main objective of this project is	
	to improve the performance of T-Type NPC	
	Inverters by using a capacitor voltage balancing	
	hybrid PWM technique.	
TEMAPS868,	Modulated Predictive Current Control of	Multilevel
ТЕМАРЕЗЗ4,	Photovoltaic Central NPC Inverter With	Inverters
TEMACS858,	Reduced Computational Burden	
TEPGPS858,		
TEPGPE301,	Objective: The main objective of this project is	
TEPGCS104	to develop and implement a modulated predictive	
	current control strategy for a photovoltaic central	
	NPC inverter, to enhance performance while	
	minimizing computational demands.	
TEMAPS874,	An Unbalance and Power Controller	Multilevel
TEPGPS864,	Allowing Smooth Islanded Transitions in	Inverters
TEMAPE338,	Three-Phase Microgrids	
TEPGPE305		

	Objective : The main objective of this project is	
	to develop a power controller for seamless	
	islanded transitions in three-phase microgrids,	
	ensuring stable voltage and frequency during	
	grid-to-island mode shifts.	
TEMAPS867,	Single-Phase 15-Level Switched-Capacitor	Multilevel
TEPGPS857,	Boost Multilevel Inverter Topology for	Inverters
ТЕМАРЕЗЗЗ,	Renewable Energy Applications	
TEPGPE300		
	Objective: The main objective of this project is	
	to provide a high-efficiency, low-cost inverter	
	that can boost and convert DC power from	
	renewable sources into high-quality AC power,	
	while reducing the number of power electronic	
	components and achieving better voltage	
TEMADCO 4 C	regulation and harmonic performance. A New Multilevel Inverter with Reduced	Multiloud
TEMAPS846,		Multilevel Inverters
TEPGPS837, TEMAPE325,	Component Count for a Standalone Solar Energy Conversion System	iliverters
TEPGPE292,	Energy Conversion System	
TEMAED234,	Objective : The main objective of this project is	
TEPGED228	to propose a new multilevel inverter with reduced	
	component count for a standalone solar energy	
	conversion system-based application.	
TEMAPS832,	A Unidirectional Cascaded High-Power	Multilevel
TEMAPE319,	Wind Converter With Reduced Number	Inverters
TEMAED227,	of Active Devices	
TEPGPS823,		
TEPGPE286,	Objective: The main objective of this project is	
TEPGED221	to reduce the number of active devices by using a	
	Unidirectional Cascaded High-Power Wind	
	Converter.	
TEMAPS807,	Designing of a PSO-Based Adaptive SMC	Multilevel
TEPGPS807,	With a Multilevel Inverter for MPPT of PV	Inverters

TEMAPE304, TEPGPE276, TEMACS98, TEPGCS92	Systems Under Rapidly Changing Weather Conditions Objective: The main objective of this project is to design a PSO-based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions to enhance the overall efficiency and stability of the PV system.	
TEMAPS801, TEPGPS800, TEMAPE302, TEPGPE274	Design of an Extendable High Boost Multi-Port Z-Network Converter for Small Power Grid-Connected PV Applications Objective: The main objective of this project is to propose an extendable high boost Multi-port Z-Network converter for implementing in Grid Connected PV Applications.	Multilevel Inverters

2024 - 2025 EEE ELECTRICAL DRIVES IEEE TITLES

S.NO	TITLE	DOMAIN
	Enhancing Zero Voltage Ride Through of	AC Drives
TEMAPS882, TEPGPS872,	PMSG-Based Wind Generator With	AC DITVES
TEMAED244,	Interchange of Converter Control	
TEPGED238,	and Optimized Supercapacitor	
TEMAPE343,	Energy Storage System	
TEPGPE310	Lifergy Storage System	
	Objective: The main objective of this project is to	
	improve the reliability and stability of wind energy	
	systems during grid disturbances. This is achieved	
	by optimizing the control strategy of the converter	
	and incorporating a super-capacitor-based energy	
	storage system.	
TEMAPS879,	Generalized DSC-FDC-PLL	AC Drives
TEPGPS869,	Based Synchronization of PV Array-BES	
TEMACS864,	Fed Water Pump System With Utility Grid	
TEPGCS110,	Objection The Main chieving of this project is to	
TEMAED242,	Objective : The Main objective of this project is to develop and implement a generalized delayed signal	
TEPGED236	cancellation (GDSC)-based phase-locked loop	
	(PLL) for synchronizing a photovoltaic (PV) array	
	and battery-supported water pump system with the	
	utility grid, ensuring efficient power management in	
	both grid-connected and islanded modes.	
TEMAPS876,	Passive Control for Brushless Doubly-Fed	AC Drives
TEPGPS866,	Reluctance Generator Under	
TEMAED241,	Unbalanced Grid Voltages	
TEPGED235		
	Objective: The main objective of this project is to	
	develop a passive control strategy for Brushless	
	Doubly-Fed Reluctance Generators (BDFRGs) that	
	effectively mitigates the adverse effects of	
	unbalanced grid voltages.	

mm		
TEMAPS836,	Experimental Validation of Feedback PI	AC Drives
TEPGPS827,	Controllers for Multi-Rotor Wind Energy	
TEMAED228,	Conversion Systems	
TEPGED222		
	Objective: The main objective of this project is to	
	access the performance and stability analysis of the	
	controllers in real-world conditions and evaluating	
	their ability to maintain optimal rotor speeds and	
	maximize energy conversion efficiency under	
	varying wind conditions.	
TEMAPS846,	A New Multilevel Inverter with Reduced	AC Drives
TEPGPS837,	Component Count for a Standalone Solar	
ТЕМАРЕ325,	Energy Conversion System	
TEPGPE292,		
TEMAED234,	Objective : The main objective of this project is to	
TEPGED228	propose a new multilevel inverter with reduced	
	component count for a standalone solar energy	
	conversion system-based application.	
TEMAPS832,	A Unidirectional Cascaded High-Power	AC Drives
TEMAPE319,	Wind Converter With Reduced Number	
TEMAED227,	of Active Devices	
TEPGPS823,		
TEPGPE286,	Objective: The main objective of this project is to	
TEPGED221	reduce the number of active devices by using a	
	Unidirectional Cascaded High-Power Wind	
	Converter.	
TEMAPS830,	Stability Analysis and Enhanced Virtual	AC Drives
TEPGPS821,	Synchronous Control for Brushless Doubly-	
TEMAED225,	fed Induction Generator Based Wind	
TEPGED219	Turbines	
	Objective: The main objective of this project is to	
	analyze the stability and propose the virtual	
	synchronous control for Brushless Doubly-fed	
	Induction Generator Based Wind Turbines.	
TEMAPS813,	Modelling and Coordinated Control of Grid	AC Drives
TEMAPS814,	Connected Photovoltaic, Wind Turbine	

TEPGPS818, TEMAPS808, TEMAPS809, TEMAPS810, TEPGPS808, TEPGPS809, TEPGPS810, TEMAED218, TEPGED212	Objective: The main objective of this project is to optimize the performance and integration of grid-connected photovoltaic systems, wind-turbine driven PMSGs and energy storage devices within a hybrid dc-ac microgrid through advanced modelling and coordinated control strategies.	
TEMAPS844, TEMAPS845, TEPGPS835, TEPGPS836, TEMAED233, TEPGED227	Coordinated Control of Grid-Connected PMSG Based Wind Energy System with STATCOM and Supercapacitor Energy Storage Objective: The main objective of this project is to propose a coordinated control of grid connected PMSG based wind energy system with STATCOM and supercapacitor energy storage systems.	AC DRIVES
TEPGED210, TEMAED216, TEPGED209, TEMAED215	Performance Analysis of a High Gain Bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With Battery Charging Capability During Braking Objective: The main objective of this project to implement a high gain bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With Battery Charging Capability During Braking	DC DRIVES
TEMAPS881, TEMAPE342, TEMAED243, TEPGPS871, TEPGPE309, TEPGED237,	Hybrid Compensation Based Efficient Wireless Charging System Design with Solar Photovoltaic Interface Toward Sustainable Transportation Objective: The main objective of this project, is to	Electric Vehicles

	design an efficient wireless charging system	
	integrated with a solar photovoltaic interface to	
	support sustainable transportation. The focus is on	
	improving energy transfer efficiency and ensuring	
	reliable power delivery to electric vehicles (EVs)	
	using renewable energy sources.	
TEMAPS871,	GAO Optimized Sliding Mode Based	Electric Vehicles
TEPGPS861,	Reconfigurable Step Size Pb&O MPPT	
TEMAED240,	Controller With Grid Integrated	
TEPGED234,	EV Charging Station	
TEMACS860,		
TEPGCS106	Objective: The main objective of this project is to	
	develop a GAO-optimized sliding mode-based	
	reconfigurable step size Pb&O MPPT controller to	
	maximize the efficiency of PV systems. This system	
	will seamlessly integrate with grid-connected EV	
	charging stations, ensuring optimal energy	
	utilization and reliable 24/7 charging.	
TEMAPS858,	Conjugate-Gradient Based Control in a	Electric Vehicles
TEPGPS848,	Grid-Integrated PV With 24/7 Distortion-Free	
TEMAED238,	Charging for Bidirectional EV Charger	
TEPGED232		
	Objective: The main objective of this project is to	
	optimize the power flow and enhance the efficiency	
	of energy transfer between the grid, PV system, and	
	EV charger. This approach aims to minimize	
	harmonic distortions and ensure seamless charging	
	and discharging of EV batteries, promoting reliable and sustainable energy management.	
ТЕМАРЕЗ27,	Multifunctional Integrated DC-DC Converter	Electric Vehicles
TEMAED237,	for Electric Vehicles	
TEPGPE294,		
TEPGED231	Objective: The main objective of this project is to	
	develop a single integrated DC-DC converter that	
	can perform multiple functions (G2V, V2G, and	
	LDC modes) efficiently, reducing the number of	

	components, complexity, and overall cost, while improving the performance and reliability of power conversion in electric vehicles	
TEMAPS856, TEPGPS846, TEMAPS857, TEPGPS847,	A Single-Stage Bridgeless PFC Charger with Enhanced Power Quality for LEV Mounted Solar PV Panel	Electric Vehicles
TEMAED236, TEPGED230	Objective: The main objective of the project is to design a single-stage bridgeless Power Factor Correction (PFC) charger that enhances power quality for solar photovoltaic (PV) panels installed on light electric vehicles (LEVs). This integrated approach optimizes efficiency, minimizes power losses.	
TEMAPE326, TEMAED235, TEPGPE293,	A Boost-LC Resonance Multimode DC-DC Converter for EV Charger Application	Electric Vehicles
TEPGED229	Objective: The main objective of this project is to achieve high efficiency, high voltage gain, and a wide output voltage range while overcoming the limitations of conventional full-bridge (FB) LLC resonant converters.	
TEPGED224, TEPGPE290,	Hybrid Control Method of Full-Bridge LLC Resonant Converter Based on Electric	Electric Vehicles
TEMAED230, TEMAPE323	Vehicle	
	Objective: The main objective of this project is to optimizing its performance for electric vehicle applications by enhancing efficiency and stability. This involves integrating advanced control techniques to improve power conversion and reliability.	
TEMAPS837, TEPGPS828,	Analysis of Renewable Energy Sources and Electrical Vehicles Integration	Electric Vehicles
TEMAED229, TEPGED223	Into Microgrid	
	Objective: The main objective of this project is to analyze how the renewable energy sources and electric vehicles are responding to load changes at	

	grid.	
TEMAPS831,	HESS management for Virtual Inertia,	Electric Vehicles
TEPGPS822,	Frequency and Voltage Support through	Liectife venicles
· ·	Off-board EV Bidirectional Chargers	
TEMAED226,	On-board Ev Bidnectional Chargers	
TEPGED220		
	Objective: The main objective of this project is to	
	enhance grid stability by dynamically balancing	
	power supply and demand, providing rapid	
	frequency response and maintaining voltage levels.	
TEMAPS827,	Integrated Three-Port Converter for	Electric Vehicles
TEMAED224,	Solar-Charged Electric Vehicle Applications	Electric venicles
TEPGPS818,	Solar-Charged Electric Vehicle Applications	
TEPGED218	Objective: The main objective of this project is to	
TEFGED210	efficiently manage power flow from solar panels	
	to both a high-voltage battery (HVB) and a low-	
	voltage battery (LVB). Optimizing the use of solar	
TEM A DCO2 (energy even under partial shading conditions.	Planti Valida
TEMAPS826,	Cascaded Interleaved DC-DC Converter for a	Electric Vehicles
TEPGPS817,	Bidirectional Electric Vehicle Charging	
TEMAPE317,	Station	
TEPGPE284,	Objective The major birding of the major is to	
TEMAED222,	Objective: The main objective of this project is to	
TEPGED216	propose a cascaded interleaved DC-DC converter	
	for a bidirectional Electric Vehicle charging station	
	to reduce current and voltage stress on the semi-	
TEMADE 210	conductors and passive elements.	Elegatorio Walaigles
TEMAPE318,	Coordinated Control Strategy for Cascaded Current-Source Converter Under	Electric Vehicles
TEPGPE285,		
TEMAED223,	Unbalanced Grid Voltage	
TEPGED217	Objective The major birding of the major is to	
	Objective: The main objective of this project is to	
	ensure stable and efficient operation by mitigating	
	the effects of voltage unbalance, maintaining power	
TEMADOOF	quality and enhancing system reliability. Multifunctional Onboard Charger for Floatric	Eleatria Vehieles
TEMAPS825,	Multifunctional Onboard Charger for Electric	Electric Vehicles
TEPGPS816,	Vehicles Integrating a Low-Voltage DC-DC	
TEMAPE314,	Converter and Solar Roof	
TEMAPE315,		

TEPGPE281, TEPGPE282, TEMAED220, TEPGED214 TEMAPE316, TEPGPE283, TEMAED221, TEPGED215	Objective: The main objective of this project is to propose a multifunctional on-board charger for electric vehicles integrating a low-voltage DC-DC converter and solar roof. New Integrated DC-DC Conversion System for Electric Vehicles Objective: The main objective of this project is to propose a new integrated DC-DC conversion system for Electric Vehicles to reduce the components as well as power losses.	Electric Vehicles
TEMAED219, TEMAPE313, TEPGED213, TEPGPE280	An LLC-Based Single-Stage Step-Up AC/DC Resonant Converter Without Boost Circuit for EV Charging With High Power Factor Objective: The main objective of this project is to develop a highly efficient, cost-effective and simplified power conversion solution that integrates power factor correction (PFC) and DC-DC Conversion into a single stage specifically designed for EV charging related applications.	Electric Vehicles
TEMAPS802, TEMAED217, TEPGPS801, TEPGED211	Efficient Bidirectional Wireless Power Transfer System Control Using Dual Phase Shift PWM Technique for Electric Vehicle Applications Objective: The main objective of this project is to optimize charging efficiency and enable power from G2V and V2G by using bidirectional wireless power transfer system. It focuses on dynamic efficiency adjustments and seamless integration with EV and smart grid infrastructures.	Electric Vehicles
TEPGED210, TEMAED216, TEPGED209, TEMAED215	Performance Analysis of a High Gain Bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With Battery Charging Capability	Electric Vehicles

PROJECT SUPPORTS FOR STUDENTS:

- ❖ PROJECT ABSTRACT
- ❖ PROJECT IEEE BASE PAPER/ REFERENCE PAPER
- ❖ PROJECT PRESENTATION IN PPT FORMAT
- ❖ PROJECT REVIEW ASSISTANCE FOR VIVA
- **❖** PROJECT DIAGRAMS
- ❖ PROJECT SOURCE CODE
- ❖ PROJECT REPORT
- ❖ PROJECT SCREEN SHOTS
- **❖** PROJECT DEMO
- ❖ PROJECT EXPLANATION
- ❖ PLAGARISM DOCUMENTATION
- ❖ INTERNATIONAL JOURNAL/CONFERENCE PUBLISHING

website: www.takeoffprojects.com

- **❖** PROJECT ACCEPTANCE LETTER
- **❖** PROJECT COMPLETION CERTIFICATE

The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments

Surekha

Shahed

4.5 * * * * *

Very nice project support, the explanation with the kit were very useful and easy to understand..

Madhu Sudan Reddy

You guys always come up with exciting new technologies...impressive!!! Keep it up...

Our Customer Base

takeoffedu

1-5-558, 1st Floor, 2nd Streat, Balaji Colony, Tirupati, Andhra Pradesh-517502.

+91 90303 33433 0877-2261612

