

ACADEMIC LIVE PROJECTS 2024-25

2024 - 2025 EEE POWER SYSTEMS IEEE TITLES

TITLE ID	TITLE	DOMAIN
TEMAPE364, TEPGPE331, TEMAPS912, TEPGPS902, TEMAPS913, TEPGPS903	An Improved Multicarrier PWM Technique for Harmonic Reduction in Cascaded H-Bridge Based Solar Photovoltaic System Objective: The main objective of this project is to develop an improved multicarrier pulse-width modulation (PWM) technique for harmonic reduction in a cascaded H-bridge-based solar photovoltaic (PV) system. The proposed technique aims to minimize total harmonic distortion (THD) in the output voltage, enhancing	Solar Power Generation
TEMAPS909, TEMAPS910, TEPGPS899, TEPGPS900, TEMAPE362, TEPGPE329	A Novel Nonisolated Four-Port Converter for Flexible DC Microgrid Operation Objective: The main objective of this project is to propose a novel non-isolated four-port converter for flexible DC microgrid operation.	Solar Power Generation
TEMAPS908, TEPGPS898, TEMAPE360, TEPGPE327	Fully Decoupled Active and Reactive Power Distribution Control for Single Phase Cascaded Connected Microinverter Under Island Mode Objective: The main objective of this project is to develop a fully decoupled control strategy for active and reactive power distribution in a single- phase cascaded microinverter operating in island	Solar Power Generation

	mode.	
TEMAPS905, TEPGPS895,	ESS Design and Management considering	Solar Power Generation
TEMAED252,	Solar PV to fed off-grid EV Charger	Generation
TEPGED246	Objective : The main objective of the project is to	
	design and manage an energy storage system	
	(ESS) to support electric vehicle (EV) charging	
	in an off-grid setup using solar photovoltaic (PV)	
	generation. The proposed system aims to	
	optimize the interaction between the PV array,	
	energy storage, and EV charging in remote areas	
	with limited or no access to the power grid.	
TEMAPS904,	Evaluating the Performance of MPPT and	Solar Power
TEPGPS894,	FPPT Approach in Standalone Solar PV	Generation
TEMAPE358, TEPGPE325	Systems Under Variable Conditions	
	Objective : The main objective of this project is	
	to analyze and compare the performance of	
	Maximum Power Point Tracking (MPPT) and	
	Fixed Power Point Tracking (FPPT) algorithms	
	in standalone solar photovoltaic (PV) systems	
	under varying environmental conditions, such as	
	changes in solar irradiance and temperature.	
TEMAPS902,	An Adaptive Control Strategy of Islanded	Solar Power
TEMAPS903, TEPGPS892,	Hybrid Microgrid Considering the	Generation
TEPGPS893	Cooperative Operation of PV-Energy Storage-	
	Diesel Generator	
	Objective: The main objective of this project is	

	to operate the islanded microgrid by implementing an adaptive control strategy with the cooperative operation of PV-Energy Storage-Diesel Generator.	
TEMAPS901, TEPGPS891, TEMACS878, TEPGCS124	PV Systems Operating in Dynamic Climatic Circumstances Using a PSO-based SMC and PID Controller	Solar Power Generation
	Objective: The main objective of this project is to develop a robust control scheme for photovoltaic (PV) systems operating under dynamic climatic conditions using a hybrid approach combining Particle Swarm Optimization (PSO)-based Sliding Mode Control (SMC) control.	
TEMAPS900, TEPGPS890, TEMAPE356, TEPGPE323	Evaluation and Control of a Solar Power System Connected with an Electrical Grid Objective: The main objective of the project is to evaluate and control a solar power system connected to an electrical grid using the Incremental Conductance (INC) MPPT technique to optimize energy transfer and improve system performance.	Solar Power Generation
TEMAPS898, TEMAPS899, TEPGPS888, TEPGPS889	Control and performance assessment of a PV and battery operated shunt active power filter Objective: The main objective of this project is to design an efficient control strategy for a shunt active power filter (SAPF) powered by solar PV	Solar Power Generation

TEMAPS897, TEMAPE355, TEPGPS887, TEPGPE322	and battery systems. This involves mitigating harmonic distortion, improving power quality, and providing reactive power compensation. Analysis of Power Coordination Control Strategy in Island Mode of Photovoltaic Energy Storage Combined System Objective: The main objective of this project is to design and analysis of power co-ordination control Strategy in Islanded Mode of	Solar Power Generation
TEMAPS895, TEPGPS885, TEMACS877, TEPGCS123	photovoltaic & energy storage combined system. Implementation of Fuzzy and Neural Networks-Based MPPT Techniques on Solar PV System	Solar Power Generation
TEMAPS891, TEPGPS881,	Objective: The main objective of this project is to implement Fuzzy and Neural Networks based MPPT techniques for Solar PV System performance enhancement. Novel Hybrid Fuzzy/Rule-based Energy Management for Grid connected Hybrid	Solar Power Generation
TEMACS874, TEPGCS120, TEMAPS892, TEPGPS882	Chjective: This main objective of this project is to develop an effective energy management strategy (EMS) for a hybrid energy storage system (HESS) composed of batteries and supercapacitors. This EMS aims to optimize power allocation between the battery and supercapacitor, enhance the dynamic response of	

	the system, stabilize the DC bus voltage, and extend the lifespan of the battery.	
TEMAPS888, TEMAPS889, TEMACS873, TEPGPS878, TEPGPS879, TEPGCS119	A Novel Fuzzy/SMC based Energy Management Strategy for Hybrid Energy Storage System in an Isolated DC Microgrid Objective: The main objective of this project is to implement an energy management strategy for hybrid energy storage system in an isolated DC microgrid using a Novel Fuzzy and SMC based controlling topology.	Solar Power Generation
TEMAPS885, TEMAPS886, TEPGPS875, TEPGPS876, TEMACS871, TEPGCS117	A Novel Cooperative Control for SMES-Battery Hybrid Energy Storage in PV Grid-Connected System Objective: The main objective of this project is to propose a novel cooperative control for SMES/Battery Hybrid Energy Storage in PV-Grid Connected System to meet escalating power demand.	Solar Power Generation
TEMAPS881, TEMAPE342, TEMAED243, TEPGPS871, TEPGPE309, TEPGED237,	Hybrid Compensation Based Efficient Wireless Charging System Design with Solar Photovoltaic Interface Toward Sustainable Transportation Objective: The main objective of this project, is to design an efficient wireless charging system integrated with a solar photovoltaic interface to support sustainable transportation. The focus is on improving energy transfer efficiency and ensuring reliable power delivery to electric vehicles (EVs) using renewable energy sources.	Solar Power Generation

TEMAPS883, TEPGPS873, TEMACS866, TEPGCS112, TEMAPE344, TEPGPE311	An Adaptive Fuzzy Controller-Based Distributed Voltage Control Strategy for a Remote Microgrid System With Solar Energy and Battery Support Objective: The main objective of this project is to propose an adaptive fuzzy controller-based distributed voltage control strategy for a remote microgrid system with solar energy and battery support.	Solar Power Generation
TEMAPS878, TEPGPS868, TEMAPE341, TEPGPE308	Two-Stage Three-Phase Transformerless Hybrid Multilevel Inverter for Solar PV Application Objective: The main objective of this project, is to develop an efficient, high-performance inverter system that converts the direct current (DC) from solar photovoltaic (PV) panels into alternating current (AC) suitable for grid integration or load supply.	Solar Power Generation
TEMAPS879, TEPGPS869, TEMACS864, TEPGCS110, TEMAED242, TEPGED236	Generalized DSC-FDC-PLL Based Synchronization of PV Array-BES Fed Water Pump System With Utility Grid Objective: The Main objective of this project is to develop and implement a generalized delayed signal cancellation (GDSC)-based phase-locked loop (PLL) for synchronizing a photovoltaic (PV) array and battery-supported water pump system with the utility grid, ensuring efficient power management in both grid-connected and islanded	Solar Power Generation

	modes.	
TEMAPS872,	A Capacitor Voltage Balancing Hybrid PWM	Solar Power
TEMAPE337,	Technique to Improve the Performance	Generation
TEPGPS862,	of T-Type NPC Inverters	
TEPGPE304	Objective: The main objective of this project is	
	to improve the performance of T-Type NPC	
	Inverters by using a capacitor voltage balancing	
	hybrid PWM technique.	
TEMAPS871,	GAO Optimized Sliding Mode Based	Solar Power
TEPGPS861,	Reconfigurable Step Size Pb&O MPPT	Generation
TEMAED240,	Controller With Grid Integrated	
TEPGED234,	EV Charging Station	
TEMACS860,		
TEPGCS106	Objective: The main objective of this project is	
	to develop a GAO-optimized sliding mode-based reconfigurable step size Pb&O MPPT controller	
	to maximize the efficiency of PV systems. This	
	system will seamlessly integrate with grid-	
	connected EV charging stations, ensuring optimal	
	energy utilization and reliable 24/7 charging.	
TEMAPS868,	Modulated Predictive Current Control of	Solar Power
ТЕМАРЕЗЗ4,	Photovoltaic Central NPC Inverter With	Generation
TEMACS858,	Reduced Computational Burden	
TEPGPS858,		
TEPGPE301,	Objective: The main objective of this project is	
TEPGCS104	to develop and implement a modulated predictive	
	current control strategy for a photovoltaic central	
	NPC inverter, to enhance performance while	
	minimizing computational demands.	
TEMAPS867,	Single-Phase 15-Level Switched-Capacitor	Solar Power
TEPGPS857,	Boost Multilevel Inverter Topology for	Generation
ТЕМАРЕЗЗЗ,	Renewable Energy Applications	
TEPGPE300		

	Objective: The main objective of this project is	
	to provide a high-efficiency, low-cost inverter	
	that can boost and convert DC power from	
	renewable sources into high-quality AC power,	
	while reducing the number of power electronic	
	components and achieving better voltage	
	regulation and harmonic performance.	
TEMAPS858,	Conjugate-Gradient Based Control in a	Solar Power
TEPGPS848,	Grid-Integrated PV With 24/7 Distortion-	Generation
TEMAED238, TEPGED232	Free Charging for Bidirectional EV Charger	
	Objective: The main objective of this project is	
	to optimize the power flow and enhance the	
	efficiency of energy transfer between the grid,	
	PV system, and EV charger. This approach aims	
	to minimize harmonic distortions and ensure	
	seamless charging and discharging of EV	
	batteries, promoting reliable and sustainable	
	energy management.	
TEMAPS864,	Circle Search Algorithm-Based Super	Solar Power
TEMACS856,	Twisting Sliding Mode Control for MPPT of	Generation
TEPGPS854,	Different Commercial PV Modules	
TEPGCS102,		
ТЕМАРЕЗЗ1,	The main objective of this project is to	
TEMAPE332,	implement a circle search algorithm based super	
TEPGPE298, TEPGPE299	twisting sliding mode control for MPPT of	
I EF UF EZ77	different commercial PV modules.	
TEMAPS859,	A Fuzzy-Based Adaptive P&O MPPT	Solar Power
TEMACS855,	Algorithm for PV Systems with Fast	Generation
TEPGPS849,	Tracking and Low Oscillations Under	
TEPGCS101	Rapidly Irradiance Change Conditions	
	Objective. The main chicative of this project is	
	Objective: The main objective of this project is	

	to get fast tracking and low oscillations under rapidly irradiance change conditions in PV system by using Fuzzy-Based adaptive P&O MPPT Algorithm.	
TEMAPS860, TEMAPS861, TEPGPS850, TEPGPS851, TEMAPE328, TEPGPE295	Voltage Feed-Forward Control of Photovoltaic Battery DC Microgrid Based on Improved Seeker Optimization Algorithm Objective: The main objective of this project is to develop a voltage feed-forward control system for a photovoltaic-battery DC microgrid, utilizing an Improved Seeker Optimization Algorithm (ISOA).	Solar Power Generation
TEMAPS856, TEPGPS846, TEMAPS857, TEPGPS847, TEMAED236, TEPGED230	A Single-Stage Bridgeless PFC Charger with Enhanced Power Quality for LEV Mounted Solar PV Panel Objective: The main objective of the project is to design a single-stage bridgeless Power Factor Correction (PFC) charger that enhances power quality for solar photovoltaic (PV) panels installed on light electric vehicles (LEVs). This integrated approach optimizes efficiency, minimizes power losses.	Solar Power Generation
TEMAPS854, TEMACS854, TEPGPS845, TEPGCS100	Improved Photovoltaic MPPT Algorithm Based on Ant Colony Optimization and Fuzzy Logic Under Conditions of Partial Shading Objective: The main objective of this project is to get the improved performance from PV array by using the AFO based MPPT algorithm under	Solar Power Generation

	partial shading conditions.	
TEMAPS855,	Three-Phase Grid Connected Shunt Active	Solar Power
TEPGPS843,	Power Filter Based on Adaptive Q-LMF	Generation
TEMAPS853,	Control Technique	
TEPGPS844	Objectives. The main chiestive of this project is	
	Objective: The main objective of this project is	
	to improve power quality in dynamic conditions	
	in Three-Phase grid connected applications by	
	using SAPF based on Q-LMF control Technique.	
TEPGPS839,	Active Power Sharing Scheme in a PV	Solar Power
TEMAPS848,	Integrated DC Microgrid With Composite	Generation
TEPGPS838,	Energy Storage Devices	
TEMAPS847		
	Objective: The main objective of this project is	
	to optimize power distribution among storage	
	systems to enhance stability and efficiency. This	
	ensures balanced power output, improved system reliability, and voltage stability.	
TEMAPS827,	Integrated Three-Port Converter for	Solar Power
TEMAED224,	Solar-Charged Electric Vehicle Applications	Generation
TEPGPS818,	Solution of the second of the	
TEPGED218	Objective: The main objective of this project	
	is to efficiently manage power flow from solar	
	panels to both a high-voltage battery (HVB)	
	and a low-voltage battery (LVB). Optimizing	
	the use of solar energy even under partial	
	shading conditions.	
TEMAPS833,	Experimental Investigations on	Solar Power
TEMAPS834,	Photovoltaic Interface Neutral Point	Generation
TEPGPS824,	Clamped Multilevel Inverter-Based Shunt	
TEPGPS825,	Active Power Filter to Enhance Grid Power	
TEMACS102, TEPGCS96	Quality	
Thi ddbyo	Objective: The main objective of this project is	
	to enhance the power quality by using PV	

interfaced NPC-MLI based shunt active power	
filter in grid related applications.	
Modelling and Coordinated Control of Grid Connected Photovoltaic, Wind Turbine Driven PMSG, and Energy Storage Device for a Hybrid DC/AC Microgrid	Solar Power Generation
Objective: The main objective of this project is to optimize the performance and integration of grid-connected photovoltaic systems, windturbine driven PMSGs and energy storage devices within a hybrid dc-ac microgrid through advanced modelling and coordinated control strategies.	
A New Multilevel Inverter with Reduced	Solar Power
Component Count for a Standalone Solar Energy Conversion System Objective: The main objective of this project is to propose a new multilevel inverter with reduced component count for a standalone solar energy conversion system-based application.	Generation
Grid-Forming Voltage-Source Inverter for Hybrid Wind-Solar Systems Interfacing Weak Grids Objective: The main objective of this project is to propose a grid forming voltage source inverter for hybrid wind-solar systems interfacing weak grids.	Solar Power Generation
Advance Controller for Power Quality and Performance Improvement of Grid- Connected Single-Phase Rooftop PVS Objective: The main objective of this project	Solar Power Generation
	Modelling and Coordinated Control of Grid Connected Photovoltaic, Wind Turbine Driven PMSG, and Energy Storage Device for a Hybrid DC/AC Microgrid Objective: The main objective of this project is to optimize the performance and integration of grid-connected photovoltaic systems, wind-turbine driven PMSGs and energy storage devices within a hybrid dc-ac microgrid through advanced modelling and coordinated control strategies. A New Multilevel Inverter with Reduced Component Count for a Standalone Solar Energy Conversion System Objective: The main objective of this project is to propose a new multilevel inverter with reduced component count for a standalone solar energy conversion system-based application. Grid-Forming Voltage-Source Inverter for Hybrid Wind-Solar Systems Interfacing Weak Grids Objective: The main objective of this project is to propose a grid forming voltage source inverter for hybrid wind-solar systems interfacing weak grids. Advance Controller for Power Quality and Performance Improvement of Grid-

TEPGCS94	is to enhance power quality and to improve	
	performance of grid-connected single phase	
	roof top photo-voltaic systems by optimizing	
	power output and ensuring stable, efficient	
	integration with the grid.	
TEMAPS828,	Dual Fuzzy-Sugeno Method to Enhance	Solar Power
TEMAPS829,	Power Quality Performance using a Single-	Generation
TEPGPS819,	phase Dual UPQC-Dual PV Without DC-Link	
TEPGPS820	Capacitor	
	Objective: The main objective of this project	
	is enhancing power quality performance	
	superior voltage regulation and load balancing	
	without the use of a DC-Link capacitor in	
	Single-Phase Dual-UPQC and Dual PV.	
TEMAPS826,	Cascaded Interleaved DC-DC Converter for	Solar Power
TEPGPS817,	a Bidirectional Electric Vehicle Charging	Generation
TEMAPE317,	Station	
TEPGPE284,		
TEMAED222,	Objective: The main objective of this project is	
TEPGED216	to propose a cascaded interleaved DC-DC	
	converter for a bidirectional Electric Vehicle	
	charging station to reduce current and voltage	
	stress on the semi-conductors and passive	
	elements.	
TEMAPS825,	Multifunctional Onboard Charger for	Solar Power
TEPGPS816,	Electric Vehicles Integrating a Low-Voltage	Generation
TEMAPE314,	DC-DC Converter and Solar Roof	
ТЕМАРЕЗ15,		
TEPGPE281,	Objective: The main objective of this project is	
TEPGPE282,		
TEMAED220,	to propose a multifunctional on-board charger for	
TEPGED214	electric vehicles integrating a low-voltage DC-	
	DC converter and solar roof.	
TEMAPS807,	Designing of a PSO-Based Adaptive SMC	Solar Power
TEPGPS807,	With a Multilevel Inverter for MPPT of PV	Generation

TEMAPE304, TEPGPE276, TEMACS98,	Systems Under Rapidly Changing Weather Conditions	
TEPGCS92	Objective: The main objective of this project is to design a PSO-based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions to enhance the overall efficiency and stability of the PV system.	
TEMAPS802,	Efficient Bidirectional Wireless Power	Solar Power
TEMAED217,	Transfer System Control Using Dual Phase	Generation
TEPGPS801, TEPGED211	Shift PWM Technique for Electric Vehicle Applications	
	Objective: The main objective of this project is to optimize charging efficiency and enable power from G2V and V2G by using bidirectional wireless power transfer system. It focuses on dynamic efficiency adjustments and seamless integration with EV and smart grid infrastructures.	
TEMAPS798,	Mitigating Uncertainty Problems of	Solar Power
TEMAPS799,	Renewable Energy Resources Through	Generation
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,	Objective: The main objective of this project is	
TEMAPE300, TEMAPE301,	to mitigate the problems of renewable energy	
TEPGPE272,	resources through efficient integration of Hybrid	
TEPGPE273	Solar PV/Wind systems into power networks.	
TEMAPS801,	Design of an Extendable High Boost Multi-	Solar Power
TEPGPS800,	Port Z-Network Converter for Small Power	Generation
ТЕМАРЕЗО2,		
TEPGPE274	Grid-Connected PV Applications	
	Objective : The main objective of this project is	
	to propose an extendable high boost Multi-port	

	Z-Network converter for implementing in Grid	
	Connected PV Applications.	
TEMAPS795,	Enhancement of Solar PV Efficiency Using	Solar Power
TEPGPS794, TEMAPE296,	Double Integral Sliding Mode MPPT Control	Generation
TEPGCS89, TEMAPE221,	Objective: The main objective of this project is	
TEPGPE193,	to enhance the efficiency of Solar Photovoltaic	
TEPGPE194	(PV) Panels through the implementation of a	
	Double Integral Sliding Mode Maximum Power	
	Point Tracking (MPPT) Control Strategy.	
TEMAPS796, TEMAPE298, TEPGPS795, TEPGPE270	Design and Analysis of Novel High-Gain Boost Converter for Renewable Energy Systems (RES)	Solar Power Generation
	Objective: The main objective of this project is to create and evaluate a high-gain boost converter customized for RES prioritizing efficiency and performance optimization for sustainable energy applications.	
TEMAPS917, TEPGPS907, TEMAPS918, TEPGCS908,	Hybrid Energy Storage Integrated Wind Energy Fed DC Microgrid Power Distribution Control and	Wind Power Generation
TEMACS881, TEPGCS127	Performance Assessment	
	Objective: The main objective of this project is to develop a novel power distribution control scheme (PDCS) for a low-voltage direct current (LVDC) microgrid. The system integrates hybrid energy storage (HESS), comprising batteries and supercapacitors, with wind energy to ensure seamless power distribution, reliable operation, and improved efficiency under varying load and generation conditions.	

TEMAPS884, TEMACS867, TEPGPS874, TEPGCS113	A Novel Coordinated Control Strategy for Frequency Regulation of MMC-HVDC Connecting Offshore Wind Farm Objective: The main objective of this project is to regulate the frequency by using a novel coordinated control strategy for MMC-HVDC systems connecting offshore wind farms	Wind Power Generation
TEMAPS882, TEPGPS872, TEMAED244, TEPGED238, TEMAPE343, TEPGPE310	(OWFs) Enhancing Zero Voltage Ride Through of PMSG-Based Wind Generator With Interchange of Converter Control and Optimized Supercapacitor Energy Storage System	Wind Power Generation
	Objective: The main objective of this project is to improve the reliability and stability of wind energy systems during grid disturbances. This is achieved by optimizing the control strategy of the converter and incorporating a super-capacitor-based energy storage system.	
TEMAPS880, TEPGPS870, TEMACS865, TEPGCS111	Dual-Sequence Synchronization Stability Analysis and Control of Multi-Paralleled Wind Farms During Asymmetrical Grid Faults Objective: The main objective of this project is to implement stability assessment method and a current control strategy to achieve the margin of dual-sequence synchronization under asymmetrical grid faults.	Wind Power Generation
TEMAPS877, TEPGPS867,	Virtual Synchronous Generator Control Strategy of Grid-Forming Matrix Converter	Wind Power Generation

TEMACS862,	for Renewable Power Generation	
TEPGCS108		
	Objective: The main objective of this project is	
	to enhance grid stability and mimic the inertia of	
	conventional synchronous generators. This	
	approach ensures smooth integration of	
	renewable energy sources into the power grid by	
	regulating voltage and frequency, thereby	
	improving system reliability and providing	
	support during grid disturbances.	
TEMAPS875,	An Ingenious Technique to Track the	Wind Power
TEMAPE339,	Maximum Power Point for a Wind Energy	Generation
TEPGPS865, TEPGPE306	System	
TEI GI E300	Objective: The main objective of this project is	
	to develop an advanced Maximum Power Point	
	Tracking (MPPT) technique for Wind Energy	
	Conversion Systems (WECS). The goal is to	
	maximize the extraction of power from wind	
	energy systems by improving the efficiency and	
	reducing oscillations around the MPP.	
TEMAPS876,	Passive Control for Brushless Doubly-Fed	Wind Power
TEPGPS866,	Reluctance Generator Under	Generation
TEMAED241, TEPGED235	Unbalanced Grid Voltages	
TELGED233	Objective: The main objective of this project is	
	to develop a passive control strategy for	
	Brushless Doubly-Fed Reluctance Generators	
	(BDFRGs) that effectively mitigates the adverse	
	effects of unbalanced grid voltages.	

TEMAPS836, TEPGPS827, TEMAED228, TEPGED222	Experimental Validation of Feedback PI Controllers for Multi-Rotor Wind Energy Conversion Systems Objective: The main objective of this project is to access the performance and stability analysis of the controllers in real-world conditions and evaluating their ability to maintain optimal rotor speeds and maximize energy conversion efficiency under varying wind conditions.	Wind Power Generation
TEPGPE288, TEMAPE321, TEPGPS826, TEMAPS835	A Maximum Power Point Tracking Technique for a Wind Power System Based on the Trapezoidal Rule Objective: The main objective of this project is to propose a maximum power point tracking (MPPT) technique for a wind power system based on the Trapezoidal Rule is to enhance the efficiency and output of the wind turbine system	Wind Power Generation
TEMAPS838,	Grid-Forming Voltage-Source Inverter for	Wind Power
TEMAPS839, TEPGPS829,	Hybrid Wind-Solar Systems Interfacing Weak Grids	Generation
TEPGPS830,	weak drids	
TEMAPE322,	Objective : The main objective of this project is	
TEPGPE289	to propose a grid forming voltage source inverter for hybrid wind-solar systems interfacing weak grids.	
TEMAPS832,	A Unidirectional Cascaded High-Power	Wind Power
ТЕМАРЕЗ19,	Wind Converter With Reduced Number	Generation
TEMAED227,	of Active Devices	
TEPGPS823,		
TEPGPE286,	Objective: The main objective of this project is	
TEPGED221	to reduce the number of active devices by using a Unidirectional Cascaded High-Power Wind Converter.	
TEMAPS844,	Coordinated Control of Grid-Connected	Wind Power
TEMAPS845,	PMSG Based Wind Energy System With	Generation
TEPGPS835,	STATCOM and Supercapacitor Energy	

TEPGPS836,	Storage	
TEMAED233,	Storage	
TEPGED227	Objective: The main objective of this project is	
	to propose a coordinated control of grid	
	connected PMSG based wind energy system with	
	STATCOM and supercapacitor energy storage	
	systems.	
TEMAPS813,	Modelling and Coordinated Control of Grid	Wind Power
TEMAPS814,	Connected Photovoltaic, Wind Turbine	Generation
TEPGPS818,	Driven PMSG, and Energy Storage Device	
TEMAPS808,	for a Hybrid DC/AC Microgrid	
TEMAPS809,	, ,	
TEMAPS810,		
TEPGPS808,	Objective: The main objective of this project	
TEPGPS809,	is to optimize the performance and integration	
TEPGPS810,	of grid-connected photovoltaic systems, wind-	
TEMAED218,	turbine driven PMSGs and energy storage	
TEPGED212	devices within a hybrid dc-ac microgrid	
	through advanced modelling and coordinated	
	control strategies.	_
TEMAPS830,	Stability Analysis and Enhanced Virtual	Wind Power
TEPGPS821,	Synchronous Control for Brushless Doubly-	Generation
TEMAED225,	fed Induction Generator Based Wind	
TEPGED219	Turbines	
	Objective: The main objective of this project is	
	to analyze the stability and propose the virtual	
	synchronous control for Brushless Doubly-fed	
	Induction Generator Based Wind Turbines.	
TEMAPS798,	Mitigating Uncertainty Problems of	Wind Power
TEMAPS799,	Renewable Energy Resources Through	Generation
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,		

ТЕМАРЕ300,	Objective: The main objective of this project	
TEMAPE301,	is to mitigate the problems of renewable	
TEPGPE272, TEPGPE273	energy resources through efficient integration	
TEI di E275	of Hybrid Solar PV/Wind systems into power	
	networks.	
TEMAPS914, TEPGPS904, TEMAPS915, TEPGPS905	Protection and Power Smoothing of a DFIG/DC Microgrid Hybrid Power System With SMES-Based Unified Power Quality Conditioner Objective: The primary objective of this paper is to develop a superconducting magnetic energy storage (SMES)-based unified power quality conditioner (UPQC) to enhance power quality, ensure protection, and smooth power fluctuations in a hybrid DFIG/DC micro grid system. The proposed system addresses low-voltage ride-through (LVRT) issues and power instability caused by renewable energy variability and grid faults.	Power Quality
TEMAPE364,	An Improved Multicarrier PWM Technique	Power Quality
TEPGPE331,	for Harmonic Reduction in Cascaded H-	C J
TEMAPS912, TEPGPS902, TEMAPS913, TEPGPS903	Bridge Based Solar Photovoltaic System Objective: The main objective of this project is	
	to develop an improved multicarrier pulse-width modulation (PWM) technique for harmonic reduction in a cascaded H-bridge-based solar photovoltaic (PV) system. The proposed technique aims to minimize total harmonic distortion (THD) in the output voltage, enhancing power quality and system efficiency	
TEMAPS898, TEMAPS899, TEPGPS888, TEPGPS889	Control and performance assessment of a PV and battery operated shunt active power filter	Power Quality

	Objective : The main objective of this project is to design an efficient control strategy for a shunt active power filter (SAPF) powered by solar PV and battery systems. This involves mitigating	
	harmonic distortion, improving power quality,	
TEMA DCOO2	and providing reactive power compensation.	D O l'u
TEMAPS893, TEMACS875,	A Fast-response Power-Flow Control Strategy	Power Quality
TEMAPE351,	of MMC-UPFC based on Active Disturbance	
TEPGPS883, TEPGCS121,	Rejection Control	
TEPGPE318	Objective: The primary objective of this paper is	
	to develop a rapid power flow control strategy for	
	the Modular Multilevel Converter-Unified Power	
	Flow Controller (MMC-UPFC) using Active	
	Disturbance Rejection Control (ADRC).	
TEMAPS873,	Optimized PI Gain in UPQC Control Based	Power Quality
TEPGPS863,	on Improved Zero Attracting Normalized	
TEMACS861, TEPGCS107	LMS	
	Objective: The main objective of this project	
	is developing an enhanced control scheme for	
	a 4-wire unified power quality conditioner	
	(UPQC) using the improved reweighted zero	
	Attracting normalized LMS (IRZA-NLMS) and	
	self-adaptive multi population Rao (SAMP-	
	Rao) optimization to effectively mitigate	
	power quality issues.	
TEMAPS862,	Improving Active Resonance Damping and	Power Quality
TEPGPS852,	Unbalanced Voltage Mitigation Based on	- -
TEMAPE330,	Combined DDSRF and Washout Filter	
TEPGPE297, TEMAPS863,	in Islanded Microgrids	
TEPGPS853		

	Objective: The main objective of this project is to develop and implement a combined approach using Double Decoupled Synchronous Reference Frame (DDSRF) and Washout Filter techniques to enhance active resonance damping and mitigate unbalanced voltage conditions in islanded microgrids. This combined approach aims to improve the stability, reliability, and power quality of islanded microgrids, ensuring efficient and continuous operation under varying load and generation conditions.	
TEMAPS856, TEPGPS846, TEMAPS857, TEPGPS847, TEMAED236, TEPGED230	A Single-Stage Bridgeless PFC Charger with Enhanced Power Quality for LEV Mounted Solar PV Panel Objective: The main objective of the project is to design a single-stage bridgeless Power Factor Correction (PFC) charger that enhances power quality for solar photovoltaic (PV) panels installed on light electric vehicles (LEVs). This integrated approach optimizes efficiency, minimizes power losses.	Power Quality
TEMACS853, TEMAPS851, TEPGPS842, TEPGCS99	An Advanced Control Strategy for a Weak Grid-Connected DG for Enhancing Voltage Support During Co-occurrence of Sag and Swell Objective: The main objective of this project is advanced control strategy for a weak grid-connected DG system is to ensure stable operation, enhance voltage support, and improve overall power quality during sag and swell events. By achieving these, strategy contributes to reliable and efficient integration of DG into the grid, supporting sustainable energy practices and enhancing grid resilience.	Power Quality

TEMAPS855,	Three-Phase Grid Connected Shunt Active	Power Quality
TEPGPS843,		1 ower quanty
TEMAPS853,	Power Filter Based on Adaptive Q-LMF	
TEPGPS844	Control Technique	
	Objective: The main objective of this project is	
	to improve power quality in dynamic conditions	
	in Three-Phase grid connected applications by	
	using SAPF based on Q-LMF control Technique.	
TEMACS104, TEPGCS98, TEMAPE324, TEPGPE291,	Predictive Control of PMSG-Based Hydro- Electric System with Battery Supported UPQC	Power Quality
TEMAPS843,	Objective: The main objective of this project is	
TEPGPS834	to propose a predictive control to achieve	
	efficient, stable, and high-quality power	
	generation and distribution from the PMSG-	
	based hydro-electric system, supplemented by the	
	battery-supported UPQC	
TEPGCS97, TEMACS103, TEPGPS832, TEMAPS841	Enhanced the Hosting Capacity of a Photovoltaic Solar System Through the Utilization of a Model Predictive Controller Objective: The main objective of this project is to enhance the hosting capacity of a photovoltaic solar system by utilizing a Model Predictive Controller (MPC) to efficiently manage power flow, thereby maximizing the integration of renewable energy.	Power Quality
TEMAPS833, TEMAPS834, TEPGPS824, TEPGPS825,	Experimental Investigations on Photovoltaic Interface Neutral Point Clamped Multilevel Inverter-Based Shunt Active Power Filter to Enhance Grid Power	Power Quality

TEMACS102, TEPGCS96	Quality	
	Objective: The main objective of this project is	
	to enhance the power quality by using PV	
	interfaced NPC-MLI based shunt active power	
	filter in grid related applications.	
TEMAPS823,	Advance Controller for Power Quality and	Power Quality
TEMAPS824,	Performance Improvement of Grid-	
TEPGPS814,	Connected Single-Phase Rooftop PVS	
TEPGPS815,		
TEMACS100,	Objective: The main objective of this project	
TEPGCS94	is to enhance power quality and to improve	
	performance of grid-connected single phase	
	roof top photo-voltaic systems by optimizing	
	power output and ensuring stable, efficient	
	integration with the grid.	
TEMAPS817,	Power Quality Improvement in	Power Quality
TEPGPS813	Commercial and Industrial Sites: An	
	Integrated Approach Mitigating Power	
	Oscillations	
	Objective: The main objective of this project is	
	to develop advanced control strategies and	
	state of the art technologies to stabilize	
	voltage and frequency, reduce oscillations, and	
	ensure a reliable and efficient power supply,	
	ultimately improving operational efficiency	
	and minimizing downtime.	
TEMAPS828,	Dual Fuzzy-Sugeno Method to Enhance	Power Quality
TEMAPS829,	Power Quality Performance using a Single-	
TEPGPS819,	phase Dual UPQC-Dual PV Without DC-Link	
TEPGPS820	Capacitor	
	Objective: The main objective of this project	
	is enhancing power quality performance	
	superior voltage regulation and load balancing	
	without the use of a DC-Link capacitor in	
	Single-Phase Dual-UPQC and Dual PV.	

TEMAPS844, TEMAPS845, TEPGPS835, TEPGPS836, TEMAED233, TEPGED227	Coordinated Control of Grid-Connected PMSG Based Wind Energy System with STATCOM and Supercapacitor Energy Storage Objective: The main objective of this project is to propose a coordinated control of grid connected PMSG based wind energy system with STATCOM and supercapacitor energy storage systems.	Power Quality
TEMAPS803, TEPGPS802	Voltage Sag, Swell, and Interruption Compensation Using DVR Based on Energy Storage Device Objective: The main objective of this project is to compensate voltage sag and swell by using DVR based on Energy Storage Device.	Power Quality
TEMAPS804, TEMACS97, TEPGPS804, TEPGCS91	Small Signal Modeling and Performance Analysis of Conventional- and Dual-UPQC Objective: The main objective of this project is to analyze the performance of conventional and Dual-UPQC in a grid connected system.	Power Quality
TEMAPS917, TEPGPS907, TEMAPS918, TEPGCS908, TEMACS881, TEPGCS127	Hybrid Energy Storage Integrated Wind Energy Fed DC Microgrid Power Distribution Control and Performance Assessment Objective: The main objective of this project is to develop a novel power distribution control scheme (PDCS) for a low-voltage direct current (LVDC) microgrid. The system	Hybrid Systems

	integrates hybrid energy storage (HESS), comprising batteries and supercapacitors, with wind energy to ensure seamless power distribution, reliable operation, and improved efficiency under varying load and generation conditions.	
TEMAPS914, TEPGPS904,	Protection and Power Smoothing of a DFIG/DC Microgrid Hybrid Power System	Hybrid Systems
TEMAPS915, TEPGPS905	With SMES-Based Unified Power Quality Conditioner	
	Objective: The primary objective of this paper is to develop a superconducting magnetic energy storage (SMES)-based unified power quality conditioner (UPQC) to enhance power quality, ensure protection, and smooth power fluctuations in a hybrid DFIG/DC micro grid system. The proposed system addresses low-voltage ride-through (LVRT) issues and power instability caused by renewable energy variability and grid faults.	
TEMAPS916,	Control of a PV-Wind Based DC Microgrid	Hybrid Systems
TEPGPS906,	With Hybrid Energy Storage System Using	
TEMACS880,	Lyapunov	
TEPGCS126	Approach and Sliding Mode Control	
	Objective : The main objective of this project is	
	to control a PV-Wind Based DC Microgrid With	
	Hybrid Energy Storage System by Using	
	Lyapunov Approach and Sliding Mode Controller.	
TEMAPS911,	Energy Management Algorithm Of Hybrid	Hybrid Systems
TEPGPS901,	DC Microgrid Using MPC Approach	
TEMACS879,		
TEPGCS125	Objective: The main objective of the project is to	
	develop an advanced energy management system	
	leveraging the Model Predictive Control (MPC)	
	technique. This system aims to optimize power	

	flow, balance supply and demand among renewable sources, storage systems, and loads, enhance system efficiency, ensure reliable operation, and adapt to dynamic conditions in a hybrid DC microgrid.	
TEMAPS896, TEPGPS886, TEMAPE354, TEPGPE321	Energy Management in Multi-Source Power System Based on PV /Wind /Batteries / Diesel Generator Connected with The Grid	Hybrid Systems
	Objective: The main objective of this project is to achieve optimized energy allocation within a multi-source power system that integrates photovoltaic (PV) panels, wind turbines, batteries, diesel generators, and grid connectivity to manage and distribute energy efficiently based on real-time availability and demand	
TEMAPS894, TEPGPS884, TEMAPE353, TEPGPE320	Hybrid Energy System Simulation and Modelling Incorporating Wind and Solar Power Objective: The main objective of this paper is to model and simulate a hybrid energy system that combines wind and solar power, aiming to assess its performance, improve energy reliability, and support the integration of renewable sources for sustainable energy production	Hybrid Systems
TEMAPS891, TEPGPS881, TEMACS874, TEPGCS120, TEMAPS892, TEPGPS882	Novel Hybrid Fuzzy/Rule-based Energy Management for Grid connected Hybrid Energy Storage System Objective: This main objective of this project is to develop an effective energy management strategy (EMS) for a hybrid energy storage system (HESS) composed of batteries and supercapacitors. This EMS aims to optimize power allocation between the battery and	Hybrid Systems

	annonce side and an income design and an income of	
	supercapacitor, enhance the dynamic response of	
	the system, stabilize the DC bus voltage, and	
	extend the lifespan of the battery.	
TEMAPS890,	Grid-Connected Hybrid Renewable Energy	Hybrid Systems
TEPGPS880,	System under Various Operating Conditions	
TEMAPE350,	Objective: The main objective of this project is	
TEPGPE317		
	to ensure stable and efficient power supply by	
	optimally integrating renewable sources like	
	solar and wind with the grid. It aims to maintain	
	power quality, maximize renewable energy	
	utilization, and ensure reliable energy dispatch	
	under varying operating conditions.	
TEMAPS888,	A Novel Fuzzy/SMC based Energy	Hybrid Systems
TEMAPS889,	Management Strategy for Hybrid Energy	
TEMACS873,	Storage System in an Isolated DC Microgrid	
TEPGPS878,		
TEPGPS879,	Objective : The main objective of this project is	
TEPGCS119	to implement an energy management strategy for hybrid energy storage system in an isolated DC	
	microgrid using a Novel Fuzzy and SMC based	
	controlling topology.	
TEMAPS887,	Neural Network Based Voltage Source	Hybrid Systems
TEMACS872,	Converter for Power Management of Hybrid	
TEPGPS877,	Energy System	
TEPGCS118	Objective: The Main objective of this project is	
	Objective: The Main objective of this project is	
	to develop a Power Management System for a	
	Hybrid Energy System by using an ANN	
	controller-based Voltage Source Converter.	
TEMAPS885,	A Novel Cooperative Control for SMES-	Hybrid Systems
TEMAPS886,	Battery Hybrid Energy Storage in PV Grid-	
TEPGPS875,	Connected System	

TEPGPS876, TEMACS871, TEPGCS117	Objective : The main objective of this project is to propose a novel cooperative control for SMES/Battery Hybrid Energy Storage in PV-Grid Connected System to meet escalating power demand.	
TEMAPS865, TEPGPS855, TEMAPS866, TEPGPS856, TEMACS857, TEPGCS103	Smooth and Uninterrupted Operation of Standalone DC Microgrid Under High and Low Penetration of RESs Objective: The main objective of the project to ensure that a standalone DC microgrid operates seamlessly and without interruption, regardless of the fluctuations in Renewable Energy Sources (RESs). This involves maintaining a stable power supply in spite of varying levels of RES penetration.	Hybrid Systems
TEPGPS841, TEPGPS840, TEMAPS850, TEMAPS849	Grid-Interactive Smooth Transition Control of Wind-Solar-DG Based Microgrid at Unpredictable Weather Conditions Objective: The main objective of the project is to develop a reliable microgrid system integrating wind, solar, and diesel generator (DG) power sources to ensure continuous power supply during both on-grid and off-grid modes in Unpredictable Weather Conditions.	Hybrid Systems
TEMAPS831, TEPGPS822, TEMAED226, TEPGED220	HESS management for Virtual Inertia, Frequency and Voltage Support through Off-board EV Bidirectional Chargers Objective: The main objective of this project is to enhance grid stability by dynamically balancing power supply and demand, providing rapid frequency response and maintaining voltage levels.	Hybrid Systems

TEMAPS813,	Modelling and Coordinated Control of Grid	Hybrid Systems
TEMAPS814,	Connected Photovoltaic, Wind Turbine	
TEPGPS818,	Driven PMSG, and Energy Storage Device	
TEMAPS808,	for a Hybrid DC/AC Microgrid	
TEMAPS809,		
TEMAPS810,	Objective The main shipships of this maint	
TEPGPS808,	Objective: The main objective of this project	
TEPGPS809,	is to optimize the performance and integration	
TEPGPS810,	of grid-connected photovoltaic systems, wind-	
TEMAED218,	turbine driven PMSGs and energy storage	
TEPGED212	devices within a hybrid dc-ac microgrid	
	through advanced modelling and coordinated	
TEM A DOZGO	control strategies.	Hadaadd Carray
TEMAPS798,	Mitigating Uncertainty Problems of	Hybrid Systems
TEMAPS799,	Renewable Energy Resources Through	
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems into Power Networks	
TEPGPS798,		
TEPGPS799,	Objective: The main objective of this project is	
TEMAPE300,	to mitigate the problems of renewable energy	
TEMAPE301,	resources through efficient integration of Hybrid	
TEPGPE272,	Solar PV/Wind systems into power networks.	
TEPGPE273	·	
TEMAPS919,	A Novel Decentralized Control Algorithm	Microgrid
TEPGPS909,	for Hybrid Energy Storage System in	
TEMACSS882,	Islanded DC Smart Grid	
TEPGCS128		
	Objective: The main objective of the project is	
	to develop a new control technique for hybrid	
	energy storage system in an islanded DC smart	
	grid, integrating batteries and super	
	capacitors to enhance reliability and	
TITLE A DOGGO	efficiency.	
TEMAPS909,	A Novel Nonisolated Four-Port Converter for	Microgrid
TEMAPS910,	Flexible DC Microgrid Operation	
TEPGPS899,		
TEPGPS900,	Objective: The main objective of this project is	
TEMAPE362,	Objective : The main objective of this project is	
TEPGPE329	to propose a novel non-isolated four-port	

	converter for flexible DC microgrid operation.	
TEMAPS902, TEMAPS903, TEPGPS892, TEPGPS893	An Adaptive Control Strategy of Islanded Hybrid Microgrid Considering the Cooperative Operation of PV-Energy Storage- Diesel Generator Objective: The main objective of this project is to operate the islanded microgrid by implementing an adaptive control strategy with the cooperative operation of PV-Energy Storage-	Microgrid
TEMAPS874, TEPGPS864, TEMAPE338, TEPGPE305	Diesel Generator. An Unbalance and Power Controller Allowing Smooth Islanded Transitions in Three-Phase Microgrids Objective: The main objective of this project is to develop a power controller for seamless islanded transitions in three-phase microgrids, ensuring stable voltage and frequency during grid-to-island mode shifts.	Microgrid
TEMAPS865, TEPGPS855, TEMAPS866, TEPGPS856, TEMACS857, TEPGCS103	Smooth and Uninterrupted Operation of Standalone DC Microgrid Under High and Low Penetration of RESs Objective: The main objective of the project to ensure that a standalone DC microgrid operates seamlessly and without interruption, regardless of the fluctuations in Renewable Energy Sources (RESs). This involves maintaining a stable power supply in spite of varying levels of RES penetration.	Microgrid
TEMAPS862, TEPGPS852, TEMAPE330,	Improving Active Resonance Damping and Unbalanced Voltage Mitigation Based on	Microgrid

TEPGPE297,	Combined DDSRF and Washout Filter	
TEMAPS863, TEPGPS853	in Islanded Microgrids	
	Objective: The main objective of this project is to develop and implement a combined approach using Double Decoupled Synchronous Reference Frame (DDSRF) and Washout Filter techniques to enhance active resonance damping and mitigate unbalanced voltage conditions in islanded microgrids. This combined approach aims to improve the stability, reliability, and power quality of islanded microgrids, ensuring efficient and continuous operation under	
	varying load and generation conditions.	
TEMAPS860,	Voltage Feed-Forward Control of	Microgrid
TEMAPS861,	Photovoltaic Battery DC Microgrid Based	
TEPGPS850,	on Improved Seeker Optimization	
TEPGPS851,	Algorithm	
ТЕМАРЕ328,		
TEPGPE295	Objective: The main objective of this project is	
	to develop a voltage feed-forward control system	
	for a photovoltaic-battery DC microgrid, utilizing	
	an Improved Seeker Optimization Algorithm	
WDD 000011	(ISOA).	16.
TEPGPS841,	Grid-Interactive Smooth Transition Control	Microgrid
TEPGPS840,	of Wind-Solar-DG Based Microgrid at	
TEMAPS850,	Unpredictable Weather Conditions	
TEMAPS849	Objective: The main objective of the project is to	
	develop a reliable microgrid system integrating	
	wind, solar, and diesel generator (DG) power	
	sources to ensure continuous power supply	
	during both on-grid and off-grid modes in	
	Unpredictable Weather Conditions.	
TEPGPS839,	Active Power Sharing Scheme in a PV	Microgrid
TEMAPS848,	Integrated DC Microgrid With Composite	
TEPGPS838,	Energy Storage Devices	
TEMAPS847		
	Objective: The main objective of this project is	
	to optimize power distribution among storage	

	systems to enhance stability and efficiency. This ensures balanced power output, improved system reliability, and voltage stability.	
TEMACS99,	Impedance Model Based Coordination	Microgrid
TEPGCS93,	Control of Secondary Ripple in DC	
TEMAPS811,	Microgrid	
TEPGPS811		
	Objective: The main objective of this project is	
	to develop a continuous coordination control	
	method based on impedance models for	
	mitigating secondary ripple in DC Microgrids	
TEMAPS837,	Analysis of Renewable Energy Sources	Microgrid
TEPGPS828,	and Electrical Vehicles Integration	
TEMAED229,	Into Microgrid	
TEPGED223		
	Objective: The main objective of this project is	
	to analyze how the renewable energy sources and	
	electric vehicles are responding to load changes	
	at grid.	

2024 - 2025 EEE Control Systems IEEE TITLES

TITLE ID	TITLE	DOMAIN
TEMAPS919,	A Novel Decentralized Control Algorithm	Control Systems
TEPGPS909,	for Hybrid Energy Storage System in	
TEMACSS882,	Islanded DC Smart Grid	
TEPGCS128		
	Objective: The main objective of the project is	
	to develop a new control technique for hybrid	
	energy storage system in an islanded DC smart	
	grid, integrating batteries and super capacitors to enhance reliability and	
	efficiency.	
TEMAPE366,	A Novel Quadruple Boost Inverter With	Control Systems
TEPGPE333,	New Optimized Fuzzy-Based Switching	,
TEMACS883,	Scheme	
TEPGCS129		
	Objective: The main objective of this project is	
	to propose a novel quadruple boost inverter with	
MENA DOOA 4	new optimized fuzzy based switching scheme.	C . 1C .
TEMAPS911, TEPGPS901,	Energy Management Algorithm Of Hybrid DC Microgrid Using MPC Approach	Control Systems
TEMACS879,	De Microgrid Using Mi C Approach	
TEPGCS125	Objective: The main objective of the project is to	
	develop an advanced energy management system	
	leveraging the Model Predictive Control (MPC)	
	technique. This system aims to optimize power	
	flow, balance supply and demand among	
	renewable sources, storage systems, and loads,	
	enhance system efficiency, ensure reliable	
	operation, and adapt to dynamic conditions in a	
	hybrid DC microgrid.	
TEMAPS901,	PV Systems Operating in Dynamic Climatic	Control Systems
TEPGPS891,	Circumstances Using a PSO-based SMC and	
TEMACS878,	PID Controller	
TEPGCS124		

	Objective: The main objective of this project is to develop a robust control scheme for photovoltaic (PV) systems operating under dynamic climatic conditions using a hybrid approach combining Particle Swarm	
TEM A DCOOL	Optimization (PSO)-based Sliding Mode Control (SMC) control. Implementation of Fuzzy and Neural	Control Systems
TEMAPS895, TEPGPS885, TEMACS877, TEPGCS123	Implementation of Fuzzy and Neural Networks-Based MPPT Techniques on Solar PV System	Control Systems
	Objective : The main objective of this project is to implement Fuzzy and Neural Networks based MPPT techniques for Solar PV System performance enhancement.	
TEMAPE352, TEPGEP319, TEMACS876, TEPGCS122	Analysis and Improvement of Transient Voltage Stability for Grid-Forming Converters	Control Systems
	Objective : The main objective of this project is to analyze and improve the transient voltage stability of grid-forming converters (GFCs) in power systems.	
TEMAPS893, TEMACS875, TEMAPE351, TEPGPS883, TEPGCS121, TEPGPE318	A Fast-response Power-Flow Control Strategy of MMC-UPFC based on Active Disturbance Rejection Control Objective: The primary objective of this paper is to develop a rapid power flow control strategy for the Modular Multilevel Converter-Unified Power Flow Controller (MMC-UPFC) using Active	Control Systems

	Disturbance Rejection Control (ADRC).	
TEMAPS891, TEPGPS881, TEMACS874, TEPGCS120, TEMAPS892, TEPGPS882	Novel Hybrid Fuzzy/Rule-based Energy Management for Grid connected Hybrid Energy Storage System Objective: This main objective of this project is to develop an effective energy management strategy (EMS) for a hybrid energy storage system (HESS) composed of batteries and supercapacitors. This EMS aims to optimize power allocation between the battery and supercapacitor, enhance the dynamic response of the system, stabilize the DC bus voltage, and extend the lifespan of the battery.	Control Systems
TEMAPS890, TEPGPS880, TEMAPE350, TEPGPE317	Grid-Connected Hybrid Renewable Energy System under Various Operating Conditions Objective: The main objective of this project is to ensure stable and efficient power supply by optimally integrating renewable sources like solar and wind with the grid. It aims to maintain power quality, maximize renewable energy utilization, and ensure reliable energy dispatch under varying operating conditions.	Control Systems
TEMAPS888, TEMAPS889, TEMACS873, TEPGPS878, TEPGPS879, TEPGCS119	A Novel Fuzzy/SMC based Energy Management Strategy for Hybrid Energy Storage System in an Isolated DC Microgrid Objective: The main objective of this project is to implement an energy management strategy for hybrid energy storage system in an isolated DC	Control Systems

	microgrid using a Novel Fuzzy and SMC based controlling topology.	
TEMAPS887,	Neural Network Based Voltage Source	Control Systems
TEMACS872,	Converter for Power Management of Hybrid	Goner or Systems
TEPGPS877,	Energy System	
TEPGCS118		
TEI GGGTTG	Objective: The Main objective of this project is	
	to develop a Power Management System for a	
	Hybrid Energy System by using an ANN	
	controller-based Voltage Source Converter.	
TEMAPS885,	A Novel Cooperative Control for SMES-	Control Systems
TEMAPS886,	Battery Hybrid Energy Storage in PV Grid-	•
TEPGPS875,	Connected System	
TEPGPS876,		
TEMACS871,	Objective : The main objective of this project is	
TEPGCS117	to propose a novel cooperative control for	
	SMES/Battery Hybrid Energy Storage in PV-	
	Grid Connected System to meet escalating power	
	demand.	
TEMAPS916,	Control of a PV-Wind Based DC Microgrid	Control Systems
TEPGPS906,	With Hybrid Energy Storage System Using	
TEMACS880,	Lyapunov	
TEPGCS126	Approach and Sliding Mode Control	
	Objective : The main objective of this project is	
	to control a PV-Wind Based DC Microgrid With	
	Hybrid Energy Storage System by Using	
	Lyapunov Approach and Sliding Mode	
	Controller.	
TEMAED248,	Speed and Position Estimation for 5-ph	Control Systems
TEMAPE347,	PMSM Using SOGI Based on SMO	
TEMACS870,	Considering Short-Circuit Fault	
TEPGED242,		
TEPGPE314,	Objective: The main objective of this project is	
TEPGCS116	to mitigate harmonics and accurately estimate	
	rotor speed and position during short-circuit	
	faults.	
TEMACS869,	Speed Regulation of PMSM Systems Based	Control Systems
TEPGCS115,	on a New Sliding Mode Reaching Law	

TEMAED247,		
TEPGED241	Objective: The objective of the project is to	
	develop a novel sliding mode reaching law to	
	enhance the speed regulation of Permanent	
	Magnet Synchronous Motor (PMSM) systems.	
	This approach aims to improve robustness and	
	accuracy in speed control by mitigating the	
	effects of disturbances and parameter variations.	
TEMAPE346,	Torque Ripple Suppression of BLDCM With	Control Systems
TEPGPE313,	Optimal Duty Cycle and Switch State	
TEMAED246,	by FCS-MPC	
TEPGED240,		
TEMACS868,	Objective : The main objective of the project is to	
TEPGCS114	suppress torque ripples in Brushless DC (BLDC)	
	motors by implementing a Finite Control Set	
	Model Predictive Control (FCS-MPC) scheme.	
	This approach aims to enhance motor	
	performance by minimizing torque fluctuations, thereby improving efficiency	
TEMAPS884,	A Novel Coordinated Control Strategy for	Control Systems
TEMACS867,	Frequency Regulation of MMC-HVDC	Control Systems
TEPGPS874,	Connecting Offshore Wind Farm	
TEPGCS113	connecting offshore white railin	
TEI GGST15	Objective: The main objective of this project	
	is to regulate the frequency by using a novel	
	coordinated control strategy for MMC-HVDC	
	systems connecting offshore wind farms	
	(OWFs)	
TEMAPS880,	Dual-Sequence Synchronization Stability	Control Systems
TEPGPS870,	Analysis and Control of Multi-Paralleled	
TEMACS865,	Wind Farms During Asymmetrical Grid	
TEPGCS111	Faults	
	Objective: The main objective of this project is	
	to implement stability assessment method and a	
	·	
	current control strategy to achieve the margin of	

	dual-sequence synchronization under asymmetrical grid faults.	
TEMAPS883, TEPGPS873, TEMACS866, TEPGCS112, TEMAPE344,	An Adaptive Fuzzy Controller-Based Distributed Voltage Control Strategy for a Remote Microgrid System With Solar Energy and Battery Support	Control Systems
TEPGPE311	Objective : The main objective of this project is to propose an adaptive fuzzy controller-based distributed voltage control strategy for a remote microgrid system with solar energy and battery support.	
TEMAPS879, TEPGPS869, TEMACS864, TEPGCS110, TEMAED242, TEPGED236	Generalized DSC-FDC-PLL Based Synchronization of PV Array-BES Fed Water Pump System With Utility Grid Objective: The Main objective of this project is to develop and implement a generalized delayed signal cancellation (GDSC)-based phase-locked loop (PLL) for synchronizing a photovoltaic (PV) array and battery-supported water pump system with the utility grid, ensuring efficient power management in both grid-connected and islanded modes.	Control Systems
TEMACS863, TEMAPE340, TEPGCS109, TEPGPE307	Adaptive Control for Improved Virtual Synchronous Generator Under Imbalanced Grid Voltage Objective: The main objective of this project is to develop an adaptive control strategy for a Virtual Synchronous Generator (VSG) that enhances performance and stability under imbalanced grid voltage conditions.	Control Systems
TEMAPS877, TEPGPS867,	Virtual Synchronous Generator Control Strategy of Grid-Forming Matrix Converter	Control Systems

TEMACS862, TEPGCS108	Objective: The main objective of this project is to enhance grid stability and mimic the inertia of conventional synchronous generators. This approach ensures smooth integration of renewable energy sources into the power grid by regulating voltage and frequency, thereby improving system reliability and providing support during grid disturbances.	
TEMAPS873,	Optimized PI Gain in UPQC Control Based	Control Systems
TEPGPS863,	on Improved Zero Attracting Normalized	
TEMACS861,	LMS	
TEPGCS107		
	Objective: The main objective of this project is developing an enhanced control scheme for a 4-wire unified power quality conditioner (UPQC) using the improved reweighted zero Attracting normalized LMS (IRZA-NLMS) and self-adaptive multi population Rao (SAMP-Rao) optimization to effectively mitigate power quality issues.	
TEMAPS871,	GAO Optimized Sliding Mode Based	Control Systems
TEPGPS861,	Reconfigurable Step Size Pb&O MPPT	
TEMAED240, TEPGED234,	Controller With Grid Integrated EV Charging Station	
TEMACS860,	2. Sharene santon	
TEPGCS106	Objective: The main objective of this project is	
	to develop a GAO-optimized sliding mode-based	
	reconfigurable step size Pb&O MPPT controller	
	to maximize the efficiency of PV systems. This	
	system will seamlessly integrate with grid- connected EV charging stations, ensuring optimal	
	energy utilization and reliable 24/7 charging.	

TEMAPS868, TEMAPE334, TEMACS858, TEPGPS858,	Modulated Predictive Current Control of Photovoltaic Central NPC Inverter With Reduced Computational Burden	Control Systems
TEPGPE301, TEPGCS104	Objective: The main objective of this project is to develop and implement a modulated predictive current control strategy for a photovoltaic central NPC inverter, to enhance performance while minimizing computational demands.	
TEMACS859, TEPGCS105, TEMAPE335, TEPGPE302	Grid-Connected Converter with Grid- Forming and Grid-Following Modes Presenting Symmetrical and Asymmetrical Fault Ride-Through Capability	Control Systems
	Objective: The main objective of this project is to propose a grid-connected converter with grid-forming and grid following modes presenting symmetrical and asymmetrical fault ride-through capability.	
TEMAPS865, TEPGPS855, TEMAPS866, TEPGPS856, TEMACS857, TEPGCS103	Smooth and Uninterrupted Operation of Standalone DC Microgrid Under High and Low Penetration of RESs Objective: The main objective of the project to ensure that a standalone DC microgrid operates seamlessly and without interruption, regardless of the fluctuations in Renewable Energy Sources (RESs). This involves maintaining a stable power supply in spite of varying levels of RES penetration.	Control Systems
TEMAPS859, TEMACS855, TEPGPS849, TEPGCS101	A Fuzzy-Based Adaptive P&O MPPT Algorithm for PV Systems with Fast Tracking and Low Oscillations Under Rapidly Irradiance Change Conditions Objective: The main objective of this project is to get fast tracking and low oscillations under rapidly irradiance change conditions in PV	Control Systems

	system by using Fuzzy-Based adaptive P&O MPPT Algorithm.	
TEMAPS864, TEMACS856, TEPGPS854, TEPGCS102, TEMAPE331, TEMAPE332, TEPGPE298, TEPGPE299	Circle Search Algorithm-Based Super Twisting Sliding Mode Control for MPPT of Different Commercial PV Modules The main objective of this project is to implement a circle search algorithm based super twisting sliding mode control for MPPT of different commercial PV modules.	Control Systems
TEMACS853, TEMAPS851, TEPGPS842, TEPGCS99	An Advanced Control Strategy for a Weak Grid-Connected DG for Enhancing Voltage Support During Co-occurrence of Sag and Swell Objective: The main objective of this project is advanced control strategy for a weak grid-connected DG system is to ensure stable operation, enhance voltage support, and improve overall power quality during sag and swell events. By achieving these, strategy contributes to reliable and efficient integration of DG into the grid, supporting sustainable energy practices and enhancing grid resilience.	Control Systems
TEMAPS854, TEMACS854, TEPGPS845, TEPGCS100	Improved Photovoltaic MPPT Algorithm Based on Ant Colony Optimization and Fuzzy Logic Under Conditions of Partial Shading Objective: The main objective of this project is to get the improved performance from PV array by using the AFO based MPPT algorithm under partial shading conditions.	Control Systems
TEMACS104, TEPGCS98, TEMAPE324, TEPGPE291,	Predictive Control of PMSG-Based Hydro- Electric System with Battery Supported UPQC	Control Systems

TEMAPS843, TEPGPS834	Objective: The main objective of this project is to propose a predictive control to achieve efficient, stable, and high-quality power generation and distribution from the PMSG-based hydro-electric system, supplemented by the battery-supported UPQC	
TEPGCS97, TEMACS103, TEPGPS832, TEMAPS841	Enhanced the Hosting Capacity of a Photovoltaic Solar System Through the Utilization of a Model Predictive Controller Objective: The main objective of this project is to enhance the hosting capacity of a photovoltaic solar system by utilizing a Model Predictive Controller (MPC) to efficiently manage power flow, thereby maximizing the integration of renewable energy.	Control Systems
TEMAPE320, TEPGPE287, TEMACS101, TEPGCS95	Sliding Mode Control of Vienna Rectifier Under Unbalanced Weak Power Grid Objective: The main objective of this project is to control the Vienne Rectifier by using Sliding Mode Controller under unbalanced weak power grid.	Control Systems
TEMAPS833, TEMAPS834, TEPGPS824, TEPGPS825, TEMACS102, TEPGCS96	Experimental Investigations on Photovoltaic Interface Neutral Point Clamped Multilevel Inverter-Based Shunt Active Power Filter to Enhance Grid Power Quality Objective: The main objective of this project is to enhance the power quality by using PV interfaced NPC-MLI based shunt active power filter in grid related applications.	Control Systems
TEMAPS823, TEMAPS824,	Advance Controller for Power Quality and Performance Improvement of Grid-	Control Systems

TEPGPS814, TEPGPS815, TEMACS100, TEPGCS94	Connected Single-Phase Rooftop PVS Objective: The main objective of this project is to enhance power quality and to improve performance of grid-connected single phase roof top photo-voltaic systems by optimizing power output and ensuring stable, efficient integration with the grid.	
TEMAPS804, TEMACS97, TEPGPS804, TEPGCS91	Small Signal Modeling and Performance Analysis of Conventional- and Dual-UPQC Objective: The main objective of this project is to analyze the performance of conventional and Dual-UPQC in a grid connected system.	Control Systems
TEMAPS807, TEPGPS807, TEMAPE304, TEPGPE276, TEMACS98, TEPGCS92	Designing of a PSO-Based Adaptive SMC With a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions Objective: The main objective of this project is to design a PSO-based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions to enhance the overall efficiency and stability of the PV system.	Control Systems
TEMAPS795, TEPGPS794, TEMAPE296, TEPGCS89, TEMAPE221, TEPGPE193, TEPGPE194	Enhancement of Solar PV Efficiency Using Double Integral Sliding Mode MPPT Control Objective: The main objective of this project is to enhance the efficiency of Solar Photovoltaic (PV) Panels through the implementation of a Double Integral Sliding Mode Maximum Power Point Tracking (MPPT) Control Strategy.	Control Systems

TEMACS99,	Impedance Model Based Coordination	Control Systems
TEPGCS93,	Control of Secondary Ripple in DC	
TEMAPS811,	Microgrid	
TEPGPS811		
	Objective: The main objective of this project is	
	to develop a continuous coordination control	
	method based on impedance models for	
	mitigating secondary ripple in DC Microgrids	

2024 - 2025 EEE POWER ELECTRONICS IEEE TITLES

S.NO	TITLE	DOMAIN
TEMAPS909,	A Novel Nonisolated Four-Port Converter for	DC-DC
TEMAPS910,	Flexible DC Microgrid Operation	Converters
TEPGPS899,		
TEPGPS900,	Objection The main abjection of this main is	
ТЕМАРЕЗ62,	Objective : The main objective of this project is	
TEPGPE329	to propose a novel non-isolated four-port	
	converter for flexible DC microgrid operation.	
TEMAPS904,	Evaluating the Performance of MPPT and	DC-DC
TEPGPS894,	FPPT Approach in Standalone Solar PV	Converters
TEMAPE358, TEPGPE325	Systems Under Variable Conditions	
	Objective : The main objective of this project is	
	to analyze and compare the performance of	
	Maximum Power Point Tracking (MPPT) and	
	Fixed Power Point Tracking (FPPT) algorithms	
	in standalone solar photovoltaic (PV) systems	
	under varying environmental conditions, such as	
	changes in solar irradiance and temperature.	
ТЕМАРЕ327,	Multifunctional Integrated DC-DC	DC-DC
TEMAED237,	Converter for Electric Vehicles	Converters
TEPGPE294,		
TEPGED231	Objective: The main objective of this project is	
	to develop a single integrated DC-DC converter	
	that can perform multiple functions (G2V, V2G,	
	and LDC modes) efficiently, reducing the	
	number of components, complexity, and overall	
	cost, while improving the performance and reliability of power conversion in electric	
	vehicles	
TEMAPS864,	Circle Search Algorithm-Based Super	DC-DC
TEMACS856,	Twisting Sliding Mode Control for MPPT of	Converters
TEPGPS854,	Different Commercial PV Modules	
TEPGCS102,		
	The main objective of this project is to	

TEMAPE331, TEMAPE332, TEPGPE298, TEPGPE299	implement a circle search algorithm based super twisting sliding mode control for MPPT of different commercial PV modules.	
TEMAPS860, TEMAPS861, TEPGPS850, TEPGPS851, TEMAPE328, TEPGPE295	Voltage Feed-Forward Control of Photovoltaic Battery DC Microgrid Based on Improved Seeker Optimization Algorithm Objective: The main objective of this project is to develop a voltage feed-forward control system for a photovoltaic-battery DC microgrid, utilizing an Improved Seeker Optimization Algorithm (ISOA).	DC-DC Converters
TEMAPE326, TEMAED235, TEPGPE293, TEPGED229	A Boost-LC Resonance Multimode DC-DC Converter for EV Charger Application Objective: The main objective of this project is to achieve high efficiency, high voltage gain, and a wide output voltage range while overcoming the limitations of conventional full-bridge (FB) LLC resonant converters.	DC-DC Converters
TEPGPE288, TEMAPE321, TEPGPS826, TEMAPS835	A Maximum Power Point Tracking Technique for a Wind Power System Based on the Trapezoidal Rule Objective: The main objective of this project is to propose a maximum power point tracking (MPPT) technique for a wind power system based on the Trapezoidal Rule is to enhance the efficiency and output of the wind turbine system	DC-DC Converters
TEMAPS795, TEPGPS794, TEMAPE296, TEPGCS89, TEMAPE221,	Enhancement of Solar PV Efficiency Using Double Integral Sliding Mode MPPT Control Objective: The main objective of this project is	DC-DC Converters

TEPGPE193, TEPGPE194 TEMAPS825, TEPGPS816,	to enhance the efficiency of Solar Photovoltaic (PV) Panels through the implementation of a Double Integral Sliding Mode Maximum Power Point Tracking (MPPT) Control Strategy. Multifunctional Onboard Charger for Electric Vehicles Integrating a Low-Voltage	DC-DC Converters
TEMAPE314, TEMAPE315, TEPGPE281, TEPGPE282, TEMAED220, TEPGED214	Objective: The main objective of this project is to propose a multifunctional on-board charger for electric vehicles integrating a low-voltage DC-DC converter and solar roof.	
TEMAPS826, TEPGPS817, TEMAPE317, TEPGPE284, TEMAED222, TEPGED216	Cascaded Interleaved DC-DC Converter for a Bidirectional Electric Vehicle Charging Station Objective: The main objective of this project is to propose a cascaded interleaved DC-DC converter for a bidirectional Electric Vehicle charging station to reduce current and voltage stress on the semi-conductors and passive elements.	DC-DC Converters
TEMAPS796, TEMAPE298, TEPGPS795, TEPGPE270	Design and Analysis of Novel High-Gain Boost Converter for Renewable Energy Systems (RES) Objective: The main objective of this project is to create and evaluate a high-gain boost converter customized for RES prioritizing efficiency and performance optimization for sustainable energy applications.	DC-DC Converters
TEMAPE316, TEPGPE283, TEMAED221, TEPGED215	New Integrated DC-DC Conversion System for Electric Vehicles Objective: The main objective of this project is to propose a new integrated DC-DC conversion	DC-DC Converters

	system for Electric Vehicles to reduce the	
	components as well as power losses.	
	reaction as well as Personal	
TEMAPE363,	A Bidirectional Bridgeless Converter-Based	AC-DC
TEPGPE330,	Electric Vehicle Charger	Converters
TEMAED256,		
TEPGED250	Objective: The main objective of this project	
	is to propose a new integrated DC-DC	
	conversion system for Electric Vehicles to	
	reduce the components as well as power	
	losses.	
ТЕМАРЕЗ65,	Isolated Power Factor Corrected High-Gain	AC-DC
TEPGPE332,	AC-DC Buck-Boost Converter-Based Single-	Converters
TEMAED257,	Stage LEV Battery Charger	
TEPGED251		
	Objective: The main objective of this project is	
	to develop to design an isolated, power factor-	
	corrected, high-gain AC-DC buck-boost	
	converter for a single-stage LEV battery charging	
MENA DEGA	system.	A.C. D.C.
TEMAPE361,	Electric Vehicle On-Board Fast Charging	AC-DC
TEPGPE328, TEMAED255,	Through Converter Maximum Switch Utilization	Converters
TEMAED255,	Othization	
TEI GEDZŦ7	Objective: The primary objective of this paper	
	is to propose a new on-board fast charging	
	topology for electric vehicles (EVs) that	
	maximizes the utilization of converter switch	
	capacity. The aim is to achieve faster charging,	
	reduce stress on components, and maintain	
	high efficiency with a compact design.	
TEMAPS882,	Enhancing Zero Voltage Ride Through of	AC-DC
TEPGPS872,	PMSG-Based Wind Generator With	Converters
TEMAED244,	Interchange of Converter Control	
TEPGED238,	and Optimized Supercapacitor	
TEMAPE343,	Energy Storage System	
I EMAFE343,		
TEPGPE310		

	Objective: The main objective of this project is to improve the reliability and stability of wind energy systems during grid disturbances. This is achieved by optimizing the control strategy of the converter and incorporating a super-capacitor-based energy storage system.	
TEMAPS875,	An Ingenious Technique to Track the	AC-DC
ТЕМАРЕЗЗ9,	Maximum Power Point for a Wind Energy	Converters
TEPGPS865, TEPGPE306	System	
	Objective: The main objective of this project is	
	to develop an advanced Maximum Power Point	
	Tracking (MPPT) technique for Wind Energy	
	Conversion Systems (WECS). The goal is to	
	maximize the extraction of power from wind	
	energy systems by improving the efficiency and	
	reducing oscillations around the MPP.	
TEMAPE320,	Sliding Mode Control of Vienna Rectifier	AC-DC
TEPGPE287,	Under Unbalanced Weak Power Grid	Converters
TEMACS101,		
TEPGCS95	Objective: The main objective of this project is	
	to control the Vienne Rectifier by using Sliding	
	Mode Controller under unbalanced weak power grid.	
ТЕМАРЕЗ18,	Coordinated Control Strategy for Cascaded	AC-DC
TEPGPE285,	Current-Source Converter Under	Converters
TEMAED223, TEPGED217	Unbalanced Grid Voltage	
	Objective: The main objective of this project is	
	to ensure stable and efficient operation by	
	mitigating the effects of voltage unbalance,	
	maintaining power quality and enhancing system	
	reliability.	
TEMAPS798,	Mitigating Uncertainty Problems of	AC-DC
TEMAPS799,	Renewable Energy Resources Through	Converters
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,		

MENA DE 200	OL: -4: The main about the first of the main at the	
TEMAPE300,	Objective: The main objective of this project is	
TEMAPE301,	to mitigate the problems of renewable energy	
TEPGPE272,	resources through efficient integration of Hybrid	
TEPGPE273	Solar PV/Wind systems into power networks.	1000
TEMAED219,	An LLC-Based Single-Stage Step-Up AC/DC	AC-DC
TEMAPE313,	Resonant Converter Without Boost Circuit	Converters
TEPGED213, TEPGPE280	for EV Charging With High Power Factor	
	Objective: The main objective of this project is	
	to develop a highly efficient, cost-effective and	
	simplified power conversion solution that	
	integrates power factor correction (PFC) and DC-	
	DC Conversion into a single stage specifically	
	designed for EV charging related applications.	
TEMAPS825,	Multifunctional Onboard Charger for	AC-DC
TEPGPS816,	Electric Vehicles Integrating a Low-Voltage	Converters
ТЕМАРЕ314,	DC-DC Converter and Solar Roof	
ТЕМАРЕ315,		
TEPGPE281,		
TEPGPE282,	Objective: The main objective of this project is	
TEMAED220,	to propose a multifunctional on-board charger for	
TEPGED214	electric vehicles integrating a low-voltage DC-	
WELL A D.CO.O.O.	DC converter and solar roof.	10.00
TEMAPS838,	Grid-Forming Voltage-Source Inverter for	AC-DC
TEMAPS839,	Hybrid Wind-Solar Systems Interfacing	Converters
TEPGPS829,	Weak Grids	
TEPGPS830,		
TEMAPE322,	Objective : The main objective of this project is	
TEPGPE289	to propose a grid forming voltage source inverter	
	for hybrid wind-solar systems interfacing weak	
TEMADOOO	grids. Fully Decoupled Active and Penetive Power	DC AC
TEMAPS908, TEPGPS898,	Fully Decoupled Active and Reactive Power	DC-AC Converters
TEMAPE360,	Distribution Control for Single Phase	Converters
TEPGPE327	Cascaded Connected Microinverter Under	
	Island Mode	
	Objective : The main objective of this project is	
	to develop a fully decoupled control strategy for	

	active and reactive power distribution in a single- phase cascaded microinverter operating in island mode.	
TEMAPS900, TEPGPS890, TEMAPE356,	Evaluation and Control of a Solar Power System Connected with an Electrical Grid	DC-AC Converters
TEPGPE323	Objective: The main objective of the project is to evaluate and control a solar power system connected to an electrical grid using the Incremental Conductance (INC) MPPT technique to optimize energy transfer and improve system performance.	
TEMAPS896, TEPGPS886, TEMAPE354, TEPGPE321	Energy Management in Multi-Source Power System Based on PV /Wind /Batteries / Diesel Generator Connected with The Grid	DC-AC Converters
	Objective: The main objective of this project is to achieve optimized energy allocation within a multi-source power system that integrates photovoltaic (PV) panels, wind turbines, batteries, diesel generators, and grid connectivity to manage and distribute energy efficiently based on real-time availability and demand	
TEMAPS897, TEMAPE355, TEPGPS887, TEPGPE322	Analysis of Power Coordination Control Strategy in Island Mode of Photovoltaic Energy Storage Combined System	DC-AC Converters
	Objective: The main objective of this project is to design and analysis of power co-ordination control Strategy in Islanded Mode of photovoltaic & energy storage combined system.	
TEMAPS894, TEPGPS884, TEMAPE353, TEPGPE320	Hybrid Energy System Simulation and Modelling Incorporating Wind and Solar Power	DC-AC Converters

	Objective : The main objective of this paper is to	
	model and simulate a hybrid energy system that	
	combines wind and solar power, aiming to assess	
	its performance, improve energy reliability, and	
	support the integration of renewable sources for	
	sustainable energy production	20.40
TEMAPE352,	Analysis and Improvement of Transient	DC-AC
TEPGEP319,	Voltage Stability for Grid-Forming	Converters
TEMACS876,	Converters	
TEPGCS122		
	Objective : The main objective of this project is	
	to analyze and improve the transient voltage	
	stability of grid-forming converters (GFCs) in	
	power systems.	
TEMAPS893,	A Fast-response Power-Flow Control Strategy	DC-AC
TEMACS875,	of MMC-UPFC based on Active Disturbance	Converters
TEMAPE351,		
TEPGPS883,	Rejection Control	
TEPGCS121,		
TEPGPE318	Objective: The primary objective of this paper is	
	to develop a rapid power flow control strategy for	
	the Modular Multilevel Converter-Unified Power	
	Flow Controller (MMC-UPFC) using Active	
	Disturbance Rejection Control (ADRC).	
TEMAED250,	High Power Density EV Integrated Fast	DC-AC
TEPGED244,	Battery Chargers Based on the General	Converters
TEMAED251,	Torque Cancelation Law for Three-phase	
TEPGED245,	Motors	
ТЕМАРЕЗ49,		
TEPGPE316	Objective: The primary goal of this project is to	
	develop a general torque cancellation law for	
	three-phase motors. This advancement aims to	
	improve motor efficiency, thereby enabling the	
	creation of high-power density, integrated fast battery chargers for electric vehicles (EVs).	
TEMAED249,	Robust Model-Free Fault-Tolerant	DC-AC
I EMAED 247,	Modust Model-Liee Lanit-Intelant	DC-AC

TEPGED243, TEMAPE348, TEPGPE315	Predictive Control for PMSM Drive System	Converters
	Objective: This main objective of this project is a model-free fault-tolerant predictive control (MFFTPC) method for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The method will use an extended sliding mode observer (ESMO) to manage uncertainties and unknown disturbances. The goal is to enhance the performance of finite-control-set model predictive control.	
TEMAED248, TEMAPE347, TEMACS870, TEPGED242, TEPGPE314, TEPGCS116	Speed and Position Estimation for 5-ph PMSM Using SOGI Based on SMO Considering Short-Circuit Fault Objective: The main objective of this project is to mitigate harmonics and accurately estimate rotor speed and position during short-circuit faults.	DC-AC Converters
TEMAPE346, TEPGPE313, TEMAED246, TEPGED240, TEMACS868, TEPGCS114	Torque Ripple Suppression of BLDCM With Optimal Duty Cycle and Switch State by FCS-MPC Objective: The main objective of the project is to suppress torque ripples in Brushless DC (BLDC) motors by implementing a Finite Control Set Model Predictive Control (FCS-MPC) scheme. This approach aims to enhance motor performance by minimizing torque fluctuations, thereby improving efficiency	DC-AC Converters
TEMAPE345, TEPGPE312,	Development and Control of PMSM Drive with Improved Performance Over Wide Speed	DC-AC Converters

TEMAED245,	and Load Ranges	
TEPGED239		
	Objective : The main objective of this project is	
	to develop and control a PMSM drive for	
	superior performance across wide speed and load	
	ranges. This involves optimizing control	
	strategies for stable operation, enhancing	
	efficiency under varying loads, and improving	
	dynamic performance by minimizing torque	
	ripple, reducing current harmonics, and ensuring	
	precise, responsive control.	
TEMAPS883,	An Adaptive Fuzzy Controller-Based	DC-AC
TEPGPS873,	Distributed Voltage Control Strategy for a	Converters
TEMACS866,	Remote Microgrid System With Solar	
TEPGCS112,	Energy and Battery Support	
TEMAPE344,		
TEPGPE311	Objective : The main objective of this project is	
	to propose an adaptive fuzzy controller-based	
	distributed voltage control strategy for a remote	
	microgrid system with solar energy and battery	
	support.	
TEMAPS881,	Hybrid Compensation Based Efficient	DC-AC
TEMAPE342,	Wireless Charging System Design with	Converters
TEMAED243,	Solar Photovoltaic Interface Toward	
TEPGPS871,	Sustainable Transportation	
TEPGPE309,		
TEPGED237,	Objective: The main objective of this project, is	
	to design an efficient wireless charging system	
	integrated with a solar photovoltaic interface to	
	support sustainable transportation. The focus is	
	on improving energy transfer efficiency and	
	ensuring reliable power delivery to electric	
	vehicles (EVs) using renewable energy sources.	

TEMACS863, TEMAPE340, TEPGCS109, TEPGPE307	Adaptive Control for Improved Virtual Synchronous Generator Under Imbalanced Grid Voltage Objective: The main objective of this project is to develop an adaptive control strategy for a Virtual Synchronous Generator (VSG) that enhances performance and stability under imbalanced grid voltage conditions.	DC-AC Converters
TEMAPS864, TEMACS856, TEPGPS854, TEPGCS102, TEMAPE331, TEMAPE332, TEPGPE298, TEPGPE299 TEPGED224,	Circle Search Algorithm-Based Super Twisting Sliding Mode Control for MPPT of Different Commercial PV Modules The main objective of this project is to implement a circle search algorithm based super twisting sliding mode control for MPPT of different commercial PV modules. Hybrid Control Method of Full-Bridge	DC-AC Converters
TEPGED224, TEPGPE290, TEMAED230, TEMAPE323	LLC Resonant Converter Based on Electric Vehicle Objective: The main objective of this project is to optimizing its performance for electric vehicle applications by enhancing efficiency and stability. This involves integrating advanced control techniques to improve power conversion and reliability.	Converters
TEMACS859, TEPGCS105, TEMAPE335, TEPGPE302	Grid-Connected Converter with Grid-Forming and Grid-Following Modes Presenting Symmetrical and Asymmetrical Fault Ride-Through Capability Objective: The main objective of this project is to propose a grid-connected converter with grid-	DC-AC Converters

	forming and grid following modes presenting	
	symmetrical and asymmetrical fault ride-through	
	capability.	
TEMAPS862,	Improving Active Resonance Damping and	DC-AC
TEPGPS852,	Unbalanced Voltage Mitigation Based on	Converters
ТЕМАРЕЗЗО,		
TEPGPE297,	Combined DDSRF and Washout Filter	
TEMAPS863,	in Islanded Microgrids	
TEPGPS853		
	Objective: The main objective of this project is	
	to develop and implement a combined approach	
	using Double Decoupled Synchronous Reference	
	Frame (DDSRF) and Washout Filter techniques	
	to enhance active resonance damping and	
	mitigate unbalanced voltage conditions in	
	islanded microgrids. This combined approach	
	aims to improve the stability, reliability, and	
	power quality of islanded microgrids, ensuring	
	efficient and continuous operation under varying	
	load and generation conditions.	
TEMACS104,	Predictive Control of PMSG-Based Hydro-	DC-AC
TEPGCS98,	Electric System with Battery Supported	Converters
TEMAPE324,	UPQC	
TEPGPE291,	Objectives The main chiestive of this musicat is	
TEMAPS843, TEPGPS834	Objective: The main objective of this project is to propose a predictive control to achieve	
TEPGPS834	efficient, stable, and high-quality power	
	generation and distribution from the PMSG-	
	based hydro-electric system, supplemented by the	
	battery-supported UPQC	
TEMAPS798,	Mitigating Uncertainty Problems of	DC-AC
TEMAPS799,	Renewable Energy Resources Through	Converters
TEMAPS800,	Efficient Integration of Hybrid Solar	
TEPGPS797,	PV/Wind Systems Into Power Networks	
TEPGPS798,		
TEPGPS799,		
ТЕМАРЕЗОО,	Objective: The main objective of this project is	
TEMAPE301,	to mitigate the problems of renewable energy	
TEPGPE272,	resources through efficient integration of Hybrid	

TEPGPE273	Solar PV/Wind systems into power networks.	
ТЕМАРЕЗ66,	A Novel Quadruple Boost Inverter With	Multilevel
TEPGPE333,	New Optimized Fuzzy-Based Switching	Inverters
TEMACS883,	Scheme	
TEPGCS129		
	Objective: The main objective of this project is	
	to propose a novel quadruple boost inverter with	
	new optimized fuzzy based switching scheme.	
TEMAPE364,	An Improved Multicarrier PWM Technique	Multilevel
TEPGPE331,	for Harmonic Reduction in Cascaded H-	Inverters
TEMAPS912,	Bridge Based Solar Photovoltaic System	
TEPGPS902,	Bridge Bused Solar 1 notovotale System	
TEMAPS913,		
TEPGPS903	Objective : The main objective of this project is	
	to develop an improved multicarrier pulse-width	
	modulation (PWM) technique for harmonic	
	reduction in a cascaded H-bridge-based solar	
	photovoltaic (PV) system. The proposed	
	technique aims to minimize total harmonic	
	distortion (THD) in the output voltage, enhancing	
	power quality and system efficiency	
TEMAPS878,	Two-Stage Three-Phase Transformerless	Multilevel
TEPGPS868,	Hybrid Multilevel Inverter for Solar PV	Inverters
TEMAPE341,	Application	
TEPGPE308		
	Objective: The main objective of this project, is	
	to develop an efficient, high-performance	
	inverter system that converts the direct current	
	(DC) from solar photovoltaic (PV) panels into	
	alternating current (AC) suitable for grid	
TITLE A DOOR O	integration or load supply.	N. 1. 1. 1
TEMAPS872,	A Capacitor Voltage Balancing Hybrid PWM	Multilevel
TEMAPE337,	Technique to Improve the Performance	Inverters
TEPGPS862,	of T-Type NPC Inverters	
TEPGPE304	Objective. The main objective of this project is	
	Objective: The main objective of this project is	
	to improve the performance of T-Type NPC	
	Inverters by using a capacitor voltage balancing	
	hybrid PWM technique.	

TEMAPS868,	Modulated Predictive Current Control of	Multilevel
TEMAPE334,	Photovoltaic Central NPC Inverter With	Inverters
TEMACS858,	Reduced Computational Burden	111, 61, 661, 6
TEPGPS858,		
TEPGPE301,	Objective: The main objective of this project is	
TEPGCS104	to develop and implement a modulated predictive	
	current control strategy for a photovoltaic central	
	NPC inverter, to enhance performance while	
	minimizing computational demands.	
TEMAPS874,	An Unbalance and Power Controller	Multilevel
TEPGPS864,	Allowing Smooth Islanded Transitions in	Inverters
ТЕМАРЕЗЗ8,	Three-Phase Microgrids	
TEPGPE305		
	Objective : The main objective of this project is	
	to develop a power controller for seamless	
	islanded transitions in three-phase microgrids,	
	ensuring stable voltage and frequency during	
	grid-to-island mode shifts.	
TEMAPS867,	Single-Phase 15-Level Switched-Capacitor	Multilevel
TEPGPS857,	Boost Multilevel Inverter Topology for	Inverters
ТЕМАРЕЗЗЗ,	Renewable Energy Applications	
TEPGPE300		
	Objective: The main objective of this project is	
	to provide a high-efficiency, low-cost inverter	
	that can boost and convert DC power from	
	renewable sources into high-quality AC power,	
	while reducing the number of power electronic	
	components and achieving better voltage regulation and harmonic performance.	
TEMAPS846,	A New Multilevel Inverter with Reduced	Multilevel
TEPGPS837,	Component Count for a Standalone Solar	Inverters
TEMAPE325,	Energy Conversion System	1117 01 001 5
TEPGPE292,		
TEMAED234,	Objective : The main objective of this project is	
TEPGED228	to propose a new multilevel inverter with reduced	
	component count for a standalone solar energy	

	conversion system-based application.	
TEMAPS832, TEMAPE319, TEMAED227, TEPGPS823, TEPGPE286, TEPGED221	A Unidirectional Cascaded High-Power Wind Converter With Reduced Number of Active Devices Objective: The main objective of this project is to reduce the number of active devices by using a Unidirectional Cascaded High-Power Wind	Multilevel Inverters
TEMAPS807,	Converter. Designing of a PSO-Based Adaptive SMC	Multilevel
TEPGPS807, TEMAPE304, TEPGPE276, TEMACS98,	With a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions	Inverters
TEPGCS92	Objective: The main objective of this project is to design a PSO-based Adaptive SMC with a Multilevel Inverter for MPPT of PV Systems Under Rapidly Changing Weather Conditions to enhance the overall efficiency and stability of the PV system.	
TEMAPS801, TEPGPS800, TEMAPE302, TEPGPE274	Design of an Extendable High Boost Multi- Port Z-Network Converter for Small Power Grid-Connected PV Applications	Multilevel Inverters
	Objective: The main objective of this project is to propose an extendable high boost Multi-port Z-Network converter for implementing in Grid Connected PV Applications.	

2024 - 2025 EEE ELECTRICAL DRIVES IEEE TITLES

S.NO	TITLE	DOMAIN
TEMAED250, TEPGED244, TEMAED251, TEPGED245, TEMAPE349,	High Power Density EV Integrated Fast Battery Chargers Based on the General Torque Cancelation Law for Three-phase Motors	AC Drives
TEPGPE316	Objective: The primary goal of this project is to develop a general torque cancellation law for three-phase motors. This advancement aims to improve motor efficiency, thereby enabling the creation of high-power density, integrated fast battery chargers	
TEMAED249,	for electric vehicles (EVs). Robust Model-Free Fault-Tolerant Predictive	AC Drives
TEPGED243, TEMAPE348, TEPGPE315	Control for PMSM Drive System Objective: This main objective of this project is a model-free fault-tolerant predictive control (MFFTPC) method for surface-mounted permanent magnet synchronous motor (SPMSM) drives. The	
	method will use an extended sliding mode observer (ESMO) to manage uncertainties and unknown disturbances. The goal is to enhance the performance of finite-control-set model predictive control.	
TEMAED248, TEMAPE347, TEMACS870, TEPGED242, TEPGPE314, TEPGCS116	Speed and Position Estimation for 5-ph PMSM Using SOGI Based on SMO Considering Short- Circuit Fault Objective: The main objective of this project is to mitigate harmonics and accurately estimate rotor	AC Drives

	speed and position during short-circuit faults.	
TEMACS869,	Speed Regulation of PMSM Systems Based	AC Drives
		AC DITVES
TEPGCS115,	on a New Sliding Mode Reaching Law	
TEMAED247,		
TEPGED241	Objective : The objective of the project is to develop	
	a novel sliding mode reaching law to enhance the	
	speed regulation of Permanent Magnet Synchronous	
	Motor (PMSM) systems. This approach aims to	
	improve robustness and accuracy in speed control	
	by mitigating the effects of disturbances and	
	parameter variations.	
ТЕМАРЕЗ46,	Torque Ripple Suppression of BLDCM With	AC Drives
TEPGPE313,	Optimal Duty Cycle and Switch State	
TEMAED246,	by FCS-MPC	
TEPGED240,		
TEMACS868,	Objective : The main objective of the project is to	
TEPGCS114	suppress torque ripples in Brushless DC (BLDC)	
	motors by implementing a Finite Control Set Model	
	Predictive Control (FCS-MPC) scheme. This	
	approach aims to enhance motor performance by	
	minimizing torque fluctuations, thereby improving	
	efficiency	
TEMAPE345,	Development and Control of PMSM Drive with	AC Drives
TEPGPE312,	Improved Performance Over Wide Speed and	
TEMAED245,	Load Ranges	
TEPGED239		
	Objective : The main objective of this project is to	
	develop and control a PMSM drive for superior	
	performance across wide speed and load ranges.	
	This involves optimizing control strategies for	
	stable operation, enhancing efficiency under varying	
	loads, and improving dynamic performance by	
	minimizing torque ripple, reducing current	
	harmonics, and ensuring precise, responsive control.	
TEMAPS882,	Enhancing Zero Voltage Ride Through of	AC Drives
TEPGPS872,	PMSG-Based Wind Generator With	
TEMAED244,	Interchange of Converter Control	
TEPGED238,	and Optimized Supercapacitor	
ТЕМАРЕЗ43,	Energy Storage System	

TEPGPE310		
	Objective: The main objective of this project is to improve the reliability and stability of wind energy systems during grid disturbances. This is achieved by optimizing the control strategy of the converter and incorporating a super-capacitor-based energy storage system.	
TEMAPS879, TEPGPS869, TEMACS864, TEPGCS110, TEMAED242, TEPGED236	Generalized DSC-FDC-PLL Based Synchronization of PV Array-BES Fed Water Pump System With Utility Grid Objective: The Main objective of this project is to develop and implement a generalized delayed signal cancellation (GDSC)-based phase-locked loop (PLL) for synchronizing a photovoltaic (PV) array and battery-supported water pump system with the utility grid, ensuring efficient power management in both grid-connected and islanded modes.	AC Drives
TEMAPS876, TEPGPS866, TEMAED241, TEPGED235	Passive Control for Brushless Doubly-Fed Reluctance Generator Under Unbalanced Grid Voltages Objective: The main objective of this project is to develop a passive control strategy for Brushless Doubly-Fed Reluctance Generators (BDFRGs) that effectively mitigates the adverse effects of unbalanced grid voltages.	AC Drives
TEMAPS836, TEPGPS827, TEMAED228, TEPGED222	Experimental Validation of Feedback PI Controllers for Multi-Rotor Wind Energy Conversion Systems Objective: The main objective of this project is to access the performance and stability analysis of the controllers in real-world conditions and evaluating their ability to maintain optimal rotor speeds and maximize energy conversion efficiency under	AC Drives

	varying wind conditions.	
TEMAPS846,	A New Multilevel Inverter with Reduced	AC Drives
TEPGPS837,	Component Count for a Standalone Solar	nd brives
TEMAPE325,	Energy Conversion System	
TEPGPE292,	Energy conversion system	
TEMAED234,	Objective : The main objective of this project is to	
TEPGED228	propose a new multilevel inverter with reduced	
	component count for a standalone solar energy	
	conversion system-based application.	
TEMAPS832,	A Unidirectional Cascaded High-Power	AC Drives
ТЕМАРЕЗ19,	Wind Converter With Reduced Number	
TEMAED227,	of Active Devices	
TEPGPS823,		
TEPGPE286,	Objective: The main objective of this project is to	
TEPGED221	reduce the number of active devices by using a	
	Unidirectional Cascaded High-Power Wind	
	Converter.	
TEMAPS830,	Stability Analysis and Enhanced Virtual	AC Drives
TEPGPS821,	Synchronous Control for Brushless Doubly-	
TEMAED225,	fed Induction Generator Based Wind	
TEPGED219	Turbines	
	Objective: The main objective of this project is to	
	analyze the stability and propose the virtual	
	synchronous control for Brushless Doubly-fed	
	Induction Generator Based Wind Turbines.	
TEMAPS813,	Modelling and Coordinated Control of Grid	AC Drives
TEMAPS814,	Connected Photovoltaic, Wind Turbine	
TEPGPS818,	Driven PMSG, and Energy Storage Device for a	
TEMAPS808,	Hybrid DC/AC Microgrid	
TEMAPS809,		
TEMAPS810,	Objective. The main objective of this projection	
TEPGPS808,	Objective: The main objective of this project is to	
TEPGPS809,	optimize the performance and integration of	
TEPGPS810,	grid-connected photovoltaic systems, wind-	
TEMAED218,	turbine driven PMSGs and energy storage	
TEPGED212	devices within a hybrid dc-ac microgrid through	

	advanced modelling and coordinated control strategies.	
TEMAPS844, TEMAPS845, TEPGPS835, TEPGPS836, TEMAED233, TEPGED227	Coordinated Control of Grid-Connected PMSG Based Wind Energy System with STATCOM and Supercapacitor Energy Storage Objective: The main objective of this project is to propose a coordinated control of grid connected PMSG based wind energy system with STATCOM and supercapacitor energy storage systems.	AC DRIVES
TEPGED210, TEMAED216, TEPGED209, TEMAED215	Performance Analysis of a High Gain Bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With Battery Charging Capability During Braking Objective: The main objective of this project to implement a high gain bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With	DC DRIVES
TEMAPE365, TEPGPE332, TEMAED257, TEPGED251	Isolated Power Factor Corrected High-Gain AC-DC Buck-Boost Converter-Based Single-Stage LEV Battery Charger Objective: The main objective of this project is to develop to design an isolated, power factor-corrected, high-gain AC-DC buck-boost converter for a single-stage LEV battery charging system.	Electric Vehicles
TEMAPE363, TEPGPE330, TEMAED256, TEPGED250	A Bidirectional Bridgeless Converter-Based Electric Vehicle Charger Objective: The main objective of this project is to propose a new integrated DC-DC conversion system for Electric Vehicles to reduce the components as well as power losses.	Electric Vehicles

TEMAPE361, TEPGPE328, TEMAED255, TEPGED249	Electric Vehicle On-Board Fast Charging Through Converter Maximum Switch Utilization Objective: The primary objective of this paper is to propose a new on-board fast charging topology for electric vehicles (EVs) that maximizes the utilization of converter switch	Electric Vehicles
	capacity. The aim is to achieve faster charging, reduce stress on components, and maintain high efficiency with a compact design.	
TEMAPS905, TEPGPS895, TEMAED252, TEPGED246	ESS Design and Management considering Solar PV to fed off-grid EV Charger	Electric Vehicles
	Objective : The main objective of the project is to design and manage an energy storage system (ESS) to support electric vehicle (EV) charging in an offgrid setup using solar photovoltaic (PV) generation. The proposed system aims to optimize the interaction between the PV array, energy storage, and EV charging in remote areas with limited or no access to the power grid.	
TEMAED250, TEPGED244, TEMAED251, TEPGED245, TEMAPE349, TEPGPE316	High Power Density EV Integrated Fast Battery Chargers Based on the General Torque Cancelation Law for Three-phase Motors Objective: The primary goal of this project is to develop a general torque cancellation law for three-phase motors. This advancement aims to improve motor efficiency, thereby enabling the creation of high-power density, integrated fast battery chargers for electric vehicles (EVs).	Electric Vehicles
TEMAPS881, TEMAPE342, TEMAED243, TEPGPS871, TEPGPE309,	Hybrid Compensation Based Efficient Wireless Charging System Design with Solar Photovoltaic Interface Toward Sustainable Transportation	Electric Vehicles

TEPGED237,	Objective: The main objective of this project, is to	
	design an efficient wireless charging system	
	integrated with a solar photovoltaic interface to	
	support sustainable transportation. The focus is on	
	improving energy transfer efficiency and ensuring	
	reliable power delivery to electric vehicles (EVs)	
	using renewable energy sources.	
TEMAPS871,	GAO Optimized Sliding Mode Based	Electric Vehicles
TEPGPS861,	Reconfigurable Step Size Pb&O MPPT	
TEMAED240,	Controller With Grid Integrated	
TEPGED234,	EV Charging Station	
TEMACS860,	Ohio ctime. The action of this project is to	
TEPGCS106	Objective: The main objective of this project is to develop a GAO-optimized sliding mode-based	
	reconfigurable step size Pb&O MPPT controller to	
	maximize the efficiency of PV systems. This system	
	will seamlessly integrate with grid-connected EV	
	charging stations, ensuring optimal energy	
	utilization and reliable 24/7 charging.	
TEMAPS858,	Conjugate-Gradient Based Control in a	Electric Vehicles
TEPGPS848,	Grid-Integrated PV With 24/7 Distortion-Free	
TEMAED238, TEPGED232	Charging for Bidirectional EV Charger	
	Objective: The main objective of this project is to	
	optimize the power flow and enhance the efficiency	
	of energy transfer between the grid, PV system, and	
	EV charger. This approach aims to minimize	
	harmonic distortions and ensure seamless charging	
	and discharging of EV batteries, promoting reliable	
mm (4 pm 0 pm	and sustainable energy management.	73
TEMAPE327,	Multifunctional Integrated DC-DC Converter for Electric Vehicles	Electric Vehicles
TEMAED237, TEPGPE294,	TOF Electric vehicles	
TEPGED231	Objective: The main objective of this project is to	
	develop a single integrated DC-DC converter that	
	can perform multiple functions (G2V, V2G, and	

	LDC modes) efficiently, reducing the number of components, complexity, and overall cost, while improving the performance and reliability of power conversion in electric vehicles	
TEMAPS856,	A Single-Stage Bridgeless PFC Charger with	Electric Vehicles
TEPGPS846,	Enhanced Power Quality for LEV Mounted	
TEMAPS857,	Solar PV Panel	
TEPGPS847,		
TEMAED236,	Objective: The main objective of the project is to	
TEPGED230	design a single-stage bridgeless Power Factor	
	Correction (PFC) charger that enhances power	
	quality for solar photovoltaic (PV) panels installed	
	on light electric vehicles (LEVs). This integrated	
	approach optimizes efficiency, minimizes power	
	losses.	
ТЕМАРЕ326,	A Boost-LC Resonance Multimode DC-DC	Electric Vehicles
TEMAED235,	Converter for EV Charger Application	
TEPGPE293,		
TEPGED229	Objective: The main objective of this project is to	
	achieve high efficiency, high voltage gain, and a	
	wide output voltage range while overcoming the	
	limitations of conventional full-bridge (FB) LLC	
	resonant converters.	
TEPGED224,	Hybrid Control Method of Full-Bridge	Electric Vehicles
TEPGPE290,	LLC Resonant Converter Based on Electric	
TEMAED230,	Vehicle	
TEMAPE323		
	Objective: The main objective of this project is to	
	optimizing its performance for electric vehicle	
	applications by enhancing efficiency and stability.	
	This involves integrating advanced control	
	techniques to improve power conversion and	
	reliability.	
TEMAPS837,	Analysis of Renewable Energy Sources	Electric Vehicles
TEPGPS828,	and Electrical Vehicles Integration	
TEMAED229,	Into Microgrid	
TEPGED223		
	Objective: The main objective of this project is to	
	analyze how the renewable energy sources and	

	7	
	electric vehicles are responding to load changes at	
	grid.	
TEMAPS831,	HESS management for Virtual Inertia,	Electric Vehicles
TEPGPS822,	Frequency and Voltage Support through	
TEMAED226,	Off-board EV Bidirectional Chargers	
TEPGED220		
	Objectives. The main chiestive of this musicat is to	
	Objective: The main objective of this project is to	
	enhance grid stability by dynamically balancing	
	power supply and demand, providing rapid	
TEMAPS827,	frequency response and maintaining voltage levels. Integrated Three-Port Converter for	Electric Vehicles
TEMAED224,	Solar-Charged Electric Vehicle Applications	Electric venicles
TEPGPS818,	Solar-charged Electric venicle Applications	
TEPGED218	Objective: The main objective of this project is to	
TEFGED210	efficiently manage power flow from solar panels	
	to both a high-voltage battery (HVB) and a low-	
	voltage battery (LVB). Optimizing the use of solar	
	energy even under partial shading conditions.	
TEMAPS826,	Cascaded Interleaved DC-DC Converter for a	Electric Vehicles
TEPGPS817,	Bidirectional Electric Vehicle Charging	Electric venicles
TEMAPE317,	Station Electric Venicle charging	
TEPGPE284,	Station	
TEMAED222,	Objective: The main objective of this project is to	
TEPGED216	propose a cascaded interleaved DC-DC converter	
TEI GEDZIO	for a bidirectional Electric Vehicle charging station	
	to reduce current and voltage stress on the semi-	
	conductors and passive elements.	
ТЕМАРЕЗ18,	Coordinated Control Strategy for Cascaded	Electric Vehicles
TEPGPE285,	Current-Source Converter Under	
TEMAED223,	Unbalanced Grid Voltage	
TEPGED217		
	Objective: The main objective of this project is to	
	ensure stable and efficient operation by mitigating	
	the effects of voltage unbalance, maintaining power	
	quality and enhancing system reliability.	
TEMAPS825,	Multifunctional Onboard Charger for Electric	Electric Vehicles
TEPGPS816,	Vehicles Integrating a Low-Voltage DC-DC	
TEMAPE314,	Converter and Solar Roof	

TEMAPE315, TEPGPE281, TEPGPE282, TEMAED220, TEPGED214 TEMAPE316, TEPGPE283, TEMAED221, TEPGED215	Objective: The main objective of this project is to propose a multifunctional on-board charger for electric vehicles integrating a low-voltage DC-DC converter and solar roof. New Integrated DC-DC Conversion System for Electric Vehicles Objective: The main objective of this project is to propose a new integrated DC-DC conversion system for Electric Vehicles to reduce the components as well as power losses.	Electric Vehicles
TEMAED219, TEMAPE313, TEPGED213, TEPGPE280 TEMAPS802, TEMAED217, TEPGPS801, TEPGED211	An LLC-Based Single-Stage Step-Up AC/DC Resonant Converter Without Boost Circuit for EV Charging With High Power Factor Objective: The main objective of this project is to develop a highly efficient, cost-effective and simplified power conversion solution that integrates power factor correction (PFC) and DC-DC Conversion into a single stage specifically designed for EV charging related applications. Efficient Bidirectional Wireless Power Transfer System Control Using Dual Phase Shift PWM Technique for Electric Vehicle Applications	Electric Vehicles Electric Vehicles
TEPGED210, TEMAED216, TEPGED209,	Objective: The main objective of this project is to optimize charging efficiency and enable power from G2V and V2G by using bidirectional wireless power transfer system. It focuses on dynamic efficiency adjustments and seamless integration with EV and smart grid infrastructures. Performance Analysis of a High Gain Bidirectional DC-DC Converter Fed Drive for an Electric Vehicle With	Electric Vehicles

TEMAED215	Battery Charging Capability During Braking	
	Objective: The main objective of this project to implement a high gain bidirectional DC-DC Converter Fed Drive for an Electric Vehicle with Battery Charging Capability During Braking	

PROJECT SUPPORTS FOR STUDENTS:

- ❖ PROJECT ABSTRACT
- ❖ PROJECT IEEE BASE PAPER/ REFERENCE PAPER
- ❖ PROJECT PRESENTATION IN PPT FORMAT
- ❖ PROJECT REVIEW ASSISTANCE FOR VIVA
- ❖ PROJECT DIAGRAMS
- ❖ PROJECT SOURCE CODE
- **❖** PROJECT REPORT
- ❖ PROJECT SCREEN SHOTS
- **❖** PROJECT DEMO
- ❖ PROJECT EXPLANATION
- **❖** PLAGARISM DOCUMENTATION
- ❖ INTERNATIONAL JOURNAL/CONFERENCE PUBLISHING
- ❖ PROJECT ACCEPTANCE LETTER
- **❖** PROJECT COMPLETION CERTIFICATE

The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments

Surekha

5 star to the company for its outstanding support, new technology & support

Shahed

Very nice project support, the explanation with the kit were very useful and easy to understand..

Madhu Sudan Reddy

You guys always come up with exciting new technologies...impressive!!! Keep it up...

Our Customer Base

takeoffedu

1-5-558, 1st Floor, 2nd Streat, Balaji Colony, Tirupati, Andhra Pradesh-517502.

+91 90303 33433 0877-2261612

www.takeoffprojects.com | info@takeoffprojects.com | 🚹 🖿 🥥 🔼 /TakeoffEduGroup

