

ACADEMIC LIVE PROJECTS 2023-24 takeoff_{edu}® 0

R

G

ELECTRICAL

- Power Systems
- Power Electronics
 Electrical Drives
 Control Systems

 - Hardware & more

+91 9030 333 433, +91 8776 681 444

startupindia

2023 - 2024 EEE POWER SYSTEMS IEEE TITLES

TITLE ID	TITLE	DOMAIN
TEMAPS805, TEMAPS806, TEPGPS805, TEPGPS806, TEMAPE303, TEPGPE275	 An Improved Control Strategy to Reduce Operating Hours of DG Genset in Solar PV- BES-DG Based AC Microgrid Objective: The main objective of this project is to reducing the operating hours of the Dg Genset in Solar PVBES-DG Based AC Micro grid by an improved control strategy. 	Solar Power Generation
TEMAPS771, TEMAPE282, TEPGPS770, TEPGPE252	 A Multilevel Inverter With Minimized Components Featuring Self-Balancing and Boosting Capabilities for PV Applications Objective: The main objective of this project is to propose a multilevel inverter with reduced components and high boosting abilities in Solar PV related applications. 	Solar Power Generation
TEMAPS768, TEMAPS767, TEMAPE275, TEPGPS766, TEPGPS767, TEPGPE245	Soft-Switched Boost-Cuk-Type High Step- Up Converter for Grid-Tied With Half- Bridge Inverter Objective: The main objective of this project is to efficiently convert DC power from a renewable energy source, such as solar panels or wind turbines, into AC power that can be fed back into the power grid.	Solar Power Generation
TEMAPS780, TEMAPS781, TEPGPS779, TEPGPS780	Small Hydro Based Grid Forming Converter Having Power Sharing and Synchronization Capability With DFIG Based WECSObjective: The main objective of this project is to design and demonstrate a unique hybrid	Solar Power Generation

	microgrid system that combines wind energy, small hydro-solar photovoltaic (SH-PV), and battery energy storage (BES) to provide reliable and uninterrupted power in remote areas.	
TEMAPS760, TEMAPS761, TEMAPE265, TEPGPS759, TEPGPS760, TEPGPE237	Analysis and Control of a NovelTransformer-less Grid-Connected Single- Stage Solar-Inverter using PR-ControllerObjective: The main objective of this project is to Control a Novel Transformer-less Grid- Connected Single-Stage Solar-Inverter by using PR-Controller.	Solar Power Generation
TEMAPS765, TEMAPS764, TEMAPE267, TEPGPS764, TEPGPS763, TEPGPE239	Power Quality Assessment of CPUC Based Solar Photovoltaic System With NLMS for Grid-Tied ApplicationsObjective: The main objective of this project is to assess the power quality of CPUC based Solar Photovoltaic system with NLMS in grid-tied applications.	Solar Power Generation
TEMAPS777, TEMAPS778, TEMAPS779, TEPGPS776, TEPGPS777, TEPGPS778	Rule-Based Power Management and Quality Enhancement in a Standalone MicrogridObjective: The main objective of this project is to develop and implement multi-objective and coordinated control strategies for a solar PV- diesel generator (DG)-battery storage (BS) microgrid in standalone mode.	Solar Power Generation
TEMAPS736, TEMSPS737, TEMAED191, TEPGPS735,	An Economical Solar Water Pump With Grid and Battery Backup for Continuous Operation	Solar Power Generation

TEPGPS736,	Objective: The main objective of this project is	
TEPGED185	to develop a sustainable and reliable water	
	pumping system that utilizes solar energy as its	
	primary power source. The system should be	
	capable of providing continuous water supply to	
	remote areas with minimal maintenance and	
	operating costs.	
TEMAPS787,	A Novel Single Phase Grid Connected	Solar Power
TEMAPS788,	Transformer-Less Solar Micro-Inverter	Generation
TEPGPS786,	Topology With Power Decoupling	
TEPGPS787	Capability	
	Objective: The main objective of this project is	
	to propose a single-phase grid connected	
	transformer-less solar micro converter with	
	power decoupling capability.	
TEPGPS784,	Control Strategy for Multiple Residential	Solar Power
TEPGPS783,	Solar PV System in Distribution Network	Generation
TEMAPS785,	with Improved Power Quality	
TEMAPS784		
	Objective: The main objective of this project is	
	to propose a modified power control (MPC)	
	system for an autonomous microgrid that	
	connects multiple solar photovoltaic inverter	
	(SPI) units.	
TEMAPS776,	Converter Control during Low Voltage Ride	Solar Power
TEMAPE286,	through Operation for Grid-Interfaced Solar	Generation
TEPGPS775,	PV Battery Assisted System	
TEPGPE256		
	Objective: The main objective of this project is	
	to develop an efficient control technique for grid-	
	interfaced solar PV-based distributed generation	
	systems, allowing the DGS converter to remain	
	connected to the grid during voltage sags and	
	unbalanced power generation.	
TEMACS70,	A Distributed Multimode Control Strategy	Solar Power
TEMAPE228,	for the Cascaded DC-DC Converter Applied	Generation
TEMAPS616,	to MVAC Grid-Tied PV System	

TEPGPS579, TEPGPE200, TEPGCS64	Objective: The main objective of the proposed method is to improve the robustness and applicability of the system by using MPPT control strategy.	
TEMAPS759, TEMAPS758, TEPGPS757, TEPGPS758	Dynamic Reserve Power Point Tracking in Grid-Connected Photovoltaic Power Plants Objective: The main objective of this project is to improve the efficiency and reliability of grid- connected PV systems. DRPPT technology enables PV systems to dynamically adjust their operating point to maximize the power output under changing weather and grid conditions.	Solar Power Generation
TEMAPS790, TEMAPE288, TEPGPS789, TEPGPE258	 Three-Phase Multiport DC-AC Inverter for Interfacing Photovoltaic and Energy Storage Systems to the Electric Grid Objective: The main objective of this project is to propose three-phase multiport DC-AC inverters connect photovoltaic and energy storage systems to the electric grid, enable the power conversion and grid integration. 	Solar Power Generation
TEMAPS738, TEMAPS739, TEMAPS740, TEMAPS741, TEPGPS737, TEPGPS738, TEPGPS739, TEPGPS740	A Hybrid Compensator for Unbalanced ACDistributionSystemWithRenewablePowerObjective:The main objective of this project isto design and implement a hybrid compensatorfor an unbalanced AC distribution system withrenewable power sources and mitigate voltageand current unbalance, harmonics, and reactivepower imbalances caused by the intermittent	Solar Power Generation

	nature of renewable power sources.	
TEMAPS770, TEMAPE281, TEPGPS769, TEPGPE251	Design and Analysis of High Gain DC-DCBoost Converter for Grid Connected SolarPhotovoltaic SystemObjective: The main objective of this project is to propose a high-gain DC-DC converter for a rooftop solar photovoltaic (SPV) system with a multifunctional grid-tied inverter.	Solar Power Generation
TEMAPS744, TEMAED194, TEPGPS743, TEPGED188	HighEfficiencyBidirectionalLLC+CResonantConverterWithParallelTransformersforSolar-ChargedElectricVehiclesVehiclesObjective:The main objective of this project is to develop a power conversion system that can efficiently and effectively convert the DC power from a solar panel into AC power that can be used to charge the battery of an electric vehicle.	Solar Power Generation
TEMAPS732, TEMAPS733, TEMAPS744, TEPGPS731, TEPGPS732, TEPGPS733	Reduced Voltage Sensors Based UPQC TiedSolar PV System Enabling Power QualityImprovementObjective: The main objective of this projectis to improve the power quality (PQ) indices inthe grid by eliminating voltage sensors (gridside) in the overall control.	Solar Power Generation
TEPGED189, TEMAED195, TEPGPS752, TEPGPS751, TEMAPS753, TEMAPS752	Multiport Power Management Method with Partial Power Processing in a MV Solid- State Transformer for PV, Storage, and Fast-Charging EV IntegrationObjective: The main objective of this project is to develop a multiport power management method that optimizes the power flow between	Solar Power Generation

	the PV system, energy storage system, fast-	
	Lookage Current Mitigation Technique in	Solar Dowor
TEMAPS745,	Leakage current mugation rechnique in	Generation
TEMAPS747,	Solar PV Array System Using Passive Filter	Generation
TEMAPE262,	Objective: The main objective of this project	
TEPGPS744,	is to mitigate the leakage currents in solar PV	
TEPGPS745,		
TEPGP5740, TFPGPF734	systems by using passive inters.	
TEMACS83.	Control of ILC in an Autonomous AC-DC	Solar Power
TEMAPS633.	Hybrid Microgrid With Unbalanced	Generation
TEMAPS634.	Nonlinear AC Loads	
TEMAPS635,		
TEPGCS77,	Objective : The main objective of this project is	
TEPGPS596,	provide control to a bidirectional interlinking	
TEPGPS597,	converter in an Autonomous AC-DC Hybrid	
TEPGPS598	Microgrid with Unbalanced Nonlinear AC Loads	
TEMAPS750,	Optimizing Step-Size of Perturb & Observe	Solar Power
TEMAPS751,	and Incremental Conductance MPPT	Generation
TEPGPS749,	Technicken Using DCO for Coil Tied DV	
TEPGP5/50	Techniques Using PSU for Grid-Tied PV	
	System	
	Objective: : The main objective of this project	
	is to improve the efficiency of a grid-tied PV	
	system by optimizing the MPPT algorithm	
	parameters, such as step-size, in order to	
	increase the accuracy and speed of tracking	
	the maximum power point (MPP) of the PV	
	array under varying environmental conditions	
TEMAPS729,	A New Multiport DC-DC Converter for DC	Solar Power
TEMAPS730, TEMAPS731, TEMAPE259	Microgrid Applications	Generation
TEPGPS728,		

TEPGPE231	Objective : The main objective of this project	
	is to design and develop a high-performance	
	converter that can efficiently and effectively	
	manage power flow within a DC microgrid	
	system.	
TEMAPS742, TEMAPS743, TEPGPS741, TEPGPS742, TEMAPE261,	Performance Analysis of Voltage Multiplier Coupled Cascaded Boost Converter With Solar PV Integration for DC Microgrid Application	Solar Power Generation
TEPGPE233	Objective: The main objective of this project	
	is to analyze the performance of voltage	
	multiplier coupled with cascaded boost	
	converter with solar integrated DC microgrid	
	applications.	
TEMAPS760, TEPGPS759	A Permanent Magnet Brushless Doubly Fed Electric Machine for Variable-Speed Constant-Frequency Wind Turbines	Wind Power Generation
	Objective: The main objective of this project is to develop a Permanent Magnet Brushless Doubly Fed Electric Machine (PM-BDFM) for Variable-Speed Constant-Frequency (VSCF) wind turbines to improve the efficiency and reliability of wind turbines.	
TEMAPS780, TEMAPS781, TEPGPS779, TEPGPS780	 Small Hydro Based Grid Forming Converter Having Power Sharing and Synchronization Capability With DFIG Based WECS Objective: The main objective of this project is to design and demonstrate a unique hybrid microgrid system that combines wind energy, small hydro-solar photovoltaic (SH-PV), and battery energy storage (BES) to provide reliable and uninterrupted power in remote areas. 	Wind Power Generation

TEMAPS782, TEPGPS781	Stability Analysis for DFIG-Based Wind Farm Grid-Connected System Under All Wind Speed Conditions	Wind Power Generation
	Objective: The main objective of this project is to improve the stable operation of a wind farm grid-connected system using doubly-fed induction generators (DFIG-WFGS) and to analyze the system's stability under varying wind speeds.	
TEMAPS738,	A Hybrid Compensator for Unbalanced AC	Wind Power
TEMAPS739,	Distribution System With Renewable	Generation
TEMAPS740,	Power	
TEMAPS741,	Objective. The main objective of this project is	
TEPGPS737, TEPGPS738	to design and implement a hybrid compensator	
TEPGPS739,	for an unbalanced AC distribution system with	
TEPGPS740	renewable power sources and mitigate voltage	
	and current unbalance, harmonics, and reactive	
	power imbalances caused by the intermittent	
TFMAP\$754	Improved Active Current Control Scheme of	Wind Power
TEMAPS755,	Wind Energy Conversion Systems With PLL	Generation
TEPGPS753, TEPGPS754	Synchronization During Grid Faults	
	Objective: The objective of this project is	
	evaluate an improved active current control	
	scheme for Wind Energy Conversion Systems	
	(WECS) during grid faults. The proposed	
	scheme will incorporate a Phase Locked Loop	
	(PLL) synchronization technique to maintain	
	the synchronization of the WECS with the grid	
	during fault conditions.	
TEMAPS766,	Fault Analysis and Clearance in	Power Quality
TEMAPE272, TEMAPS273,	FL-APC DC-AC Converter	

TEPGPS765, TEPGPE242, TEPGPE243	Objective: The main objective of this project is to analyze and clear the fault occurred during the operation of FL-APC DC-DC Converter.	
TEMAPS797, TEPGPS796, TEMACS96, TEMACS90	Sliding Mode Control of a Four-Leg Dynamic Voltage Restorer in a Natural Reference Frame Objective: The main objective of this project is	Power Quality
	to improve Power Quality in distribution system with using SMC based DVR.	
TEMAPS763, TEMAPE266, TEMAED196, TEPGPS761, TEPGPE238, TEPGED190	Modified Deadbeat Predictive Current Control Method for Single-Phase AC-DC PFC Converter in EV Charging SystemObjective: The main objective of this project is to propose a modified deadbeat predictive current control method for single phase ac-dc converter used in an EV charging system.	Power Quality
TEMAPS765, TEMAPS764, TEMAPE267, TEPGPS764, TEPGPS763, TEPGPE239	 Power Quality Assessment of CPUC Based Solar Photovoltaic System With NLMS for Grid-Tied Applications Objective: The main objective of this project is to assess the power quality of CPUC based Solar Photovoltaic system with NLMS in grid-tied applications. 	Power Quality
TEMAPS786, TEPGPS785, TEMAED205, TEPGED199	 Distributed Energy Resources Based EV Charging Station With Seamless Connection to Grid Objective: The main objective of this project is to propose a system for charging electric vehicles (EVs) using a common DC bus charging 	Power Quality

	infrastructure powered by hybrid renewable	
	energy sources, such as solar photovoltaic (PV)	
	and fuel cells.	
TEMAPS777, TEMAPS778, TEMAPS779, TEPGPS776, TEPGPS777, TEPGPS778	Rule-BasedPowerManagementandQualityEnhancementinaStandaloneMicrogrid </th <th>Power Quality</th>	Power Quality
TEPGPS784, TEPGPS783,	Control Strategy for Multiple Residential Solar PV System in Distribution Network	Power Quality
TEMAPS785, TEMAPS784	With Improved Power Quality	
	Objective: The main objective of this project is	
	to propose a modified power control (MPC)	
	system for an autonomous microgrid that	
	(SPI) units.	
TEMAPS757,	Super twisting sliding-mode control of	Power Quality
TEPGPS756	grid-tied quasi-z-source inverters under	
	distorted grid Voltage	
	Objective: The main objective of this project	
	is to enhance the performance, stability and	
	robustness of the Quasi-Z Source Inverter	
	(qZSI) in the presence of grid voltage	
	distortions.	
TEMACS83,	Control of ILC in an Autonomous AC-DC	Power Quality
TEMAPS633,	Hybrid Microgrid With Unbalanced	
TEMAPS634,	Nonlinear AC Loads	
TEMAPS635,		
TEPGCS77,	Objective : The main objective of this project is	
TEPGPS596,	provide control to a bidirectional interlinking	
TEPGPS597,	converter in an Autonomous AC–DC Hybrid	
TEPGPS598	Microgrid with Unbalanced Nonlinear AC Loads	

TEMAPS726, TEMAPS727, TEPGPS725, TEPGPS726	ImprovingVoltageRide-ThroughCapabilityofGrid-TiedMicrogridWithHarmonicsMitigationObjective:The main objective of this project istomitigatethe harmonic distortions caused bythe nonlinear loads.	Power Quality
TEMAPS738, TEMAPS739,	A Hybrid Compensator for Unbalanced AC Distribution System With Renewable	Power Quality
TEMAPS740,	Power	
TEMAPS741,		
TEPGPS737,	Objective: The main objective of this project is	
TEPGPS738,	to design and implement a hybrid compensator	
TEPGPS739,	for an unbalanced AC distribution system with	
TEPGPS740	renewable power sources and mitigate voltage and current unbalance, harmonics, and reactive power imbalances caused by the intermittent nature of renewable power sources.	
TEMAPS756,	Power Quality Compensation Strategy of	Power Quality
TEPGPS755	MMC-UPQC Based on Passive Sliding	
	Mode Control	
	Objective: The objective of this project is to	
	design a Power Quality Compensation Strategy	
	for MMC-UPQC based on Passive Sliding Mode	
	Control. MMC-UPQC (Modular Multilevel	
	Converter - Unified Power Quality Conditioner)	
	is a power electronic device used to mitigate	
	power quality issues in electrical power systems	

TEMAPS732,	Reduced Voltage Sensors Based UPQC Tied	Power Quality
TEMAPS733, TEMAPS744.	Solar PV System Enabling Power Quality	
TEPGPS731,	Improvement	
TEPGPS732, TEPGPS733		
	Objective: The main objective of this project	
	is to improve the power quality (PQ) indices in	
	the grid by eliminating voltage sensors (grid	
	side) in the overall control.	
TEMAPS745,	Leakage Current Mitigation Technique in	Power Quality
TEMAPS746, TEMAPS747	Solar PV Array System Using Passive Filter	
TEMAPE262,	Objective: The main objective of this project	
TEPGPS744, TEPGPS745,	is to mitigate the leakage currents in solar PV	
TEPGPS746, TEPGPE234	systems by using passive filters.	
TEMAPS754, TEMAPS755, TEPGPS753, TEPGPS754	Improved Active Current Control Scheme of Wind Energy Conversion Systems With PLL Synchronization During Grid Faults	Power Quality
111015754	Objective: The objective of this project is	
	evaluate an improved active current control	
	scheme for Wind Energy Conversion Systems	
	(WECS) during grid faults. The proposed	
	scheme will incorporate a Phase Locked Loop	
	(PLL) synchronization technique to maintain	
	the synchronization of the WECS with the grid	
	during fault conditions.	
TEMAPS789,	Energy Management and Power Quality	Hybrid Systems
TEPGPS788	Improvement of Hybrid Renewable Energy Generation System Using Coordinated Control Scheme	
	Objective: The main objective of this project is	
	to improve power quality in hybrid renewable	

	energy generation system by using coordinated	
	control scheme.	
TEMAPS729,	A New Multiport DC-DC Converter for DC	Hybrid System
TEMAPS730, TEMAPS731.	Microgrid Applications	
TEMAPE259,	Objective : The main objective of this project	
TEPGPS728, TEPGPS729	is to design and develop a high-performance	
TEPGPS730,	converter that can efficiently and effectively	
TEPGPE231	manage power flow within a DC microgrid	
	system.	
TEMAPS693,	A New Model Predictive Current Control	Hybrid System
TEPGPS692	Strategy for Hybrid Energy Storage System	
	Considering the SOC of the Supercapacitor	
	Objective: The main objective of this project	
	is to propose a new model predictive current	
	control strategy for HESS by considering the	
	SOC of the supercapacitor.	
TEMAPS750,	Optimizing Step-Size of Perturb & Observe	Hybrid System
TEPGPS749,	and	
TEPGPS750	Incremental Conductance MPPT	
	Techniques	
	Using PSO for Grid-Tied PV System	
	Objective: : The main objective of this project	
	is to improve the efficiency of a grid-tied PV	
	system by optimizing the MPPT algorithm	
	parameters, such as step-size, in order to	
	increase the accuracy and speed of tracking	
	the maximum power point (MPP) of the PV	

	array under varying environmental conditions	
TEMAPS738,	A Hybrid Compensator for Unbalanced AC	Distribution
TEMAPS739,	Distribution System With Renewable	System
TEMAPS740,	Power	
TEMAPS741,		
TEPGPS737,	Objective: The main objective of this project is	
TEPGPS738,	to design and implement a hybrid compensator	
TEPGPS739,	for an unbalanced AC distribution system with	
TEPGPS740	renewable power sources and mitigate voltage	
	and current unbalance, harmonics, and reactive	
	power imbalances caused by the intermittent	
	nature of renewable power sources.	
TEMAPS732,	Reduced Voltage Sensors Based UPQC Tied	Distribution
TEMAPS733, TEMAPS744	Solar PV System Enabling Power Quality	System
TEPGPS731	Improvement	
TEPGPS732,		
TEPGPS733	Objective: The main objective of this project	
	is to improve the power quality (PQ) indices in	
	the grid by eliminating voltage sensors (grid	
	side) in the overall control.	
TEMAPS735,	A Single Inductor Multi-Port Power	Distribution
TEMAED189,	Converter for Electric Vehicle Applications	System
TEMAED190, TFMAPF260		
TEPGPS734,		
TEPGPE232,	Objective: The main objective of this project	
TEPGED183,	is to propose a single inductor multi-port	
TEPGED184	power converter for Electric Vehicle	
	applications	
	applications	

TEMAPS805, TEMAPS806, TEPGPS805, TEPGPS806, TEMAPE303, TEPGPE275	 An Improved Control Strategy to Reduce Operating Hours of DG Genset in Solar PV- BES-DG Based AC Microgrid Objective: The main objective of this project is to reducing the operating hours of the Dg Genset in Solar PVBES-DG Based AC Micro grid by an improved control strategy. 	Microgrid
TEMAPS769, TEMAPE278, TEPGPS768, TEPGPE248,	 A Partial Power Processing Structure Embedding Renewable Energy Source and Energy Storage Element for Islanded DC Microgrid Objective: The main objective of this project, implemented a partial power processing structure for PV based and energy storage system based islanded DC microgrid. 	Microgrid
TEMAPS736, TEMSPS737, TEMAED191, TEPGPS735, TEPGPS736, TEPGED185	 An Economical Solar Water Pump With Grid and Battery Backup for Continuous Operation Objective: The main objective of this project is to develop a sustainable and reliable water pumping system that utilizes solar energy as its primary power source. The system should be capable of providing continuous water supply to remote areas with minimal maintenance and operating costs. 	Microgrid

TEMAPS789, TEPGPS788	 Energy Management and Power Quality Improvement of Hybrid Renewable Energy Generation System Using Coordinated Control Scheme Objective: The main objective of this project is to improve power quality in hybrid renewable energy generation system by using coordinated control scheme. 	Hybrid Systems
TEMAPS768, TEMAPS767, TEMAPE275, TEPGPS766, TEPGPS767, TEPGPE245	 Soft-Switched Boost-Cuk-Type High Step- Up Converter for Grid-Tied With Half- Bridge Inverter Objective: The main objective of this project is to efficiently convert DC power from a renewable energy source, such as solar panels or wind turbines, into AC power that can be fed back into the power grid. 	Microgrid
TEMAPS760, TEMAPS761, TEMAPE265, TEPGPS759, TEPGPS760, TEPGPE237	Analysis and Control of a NovelTransformer-less Grid-Connected Single- Stage Solar-Inverter using PR-ControllerObjective: The main objective of this project is to Control a Novel Transformer-less Grid- Connected Single-Stage Solar-Inverter by using PR-Controller.	Microgrid
TEMAPS777, TEMAPS778, TEMAPS779, TEPGPS776, TEPGPS777, TEPGPS778	Rule-BasedPowerManagementandQualityEnhancementinaStandaloneMicrogridMicrogridObjective:The main objective of this project is to develop and implement multi-objective and coordinated control strategies for a solar PV- diesel generator (DG)-battery storage (BS) microgrid in standalone mode.	Microgrid

TEMAPS787, TEMAPS788, TEPGPS786, TEPGPS787	A Novel Single Phase Grid Connected Transformer-Less Solar Micro-Inverter Topology With Power Decoupling Capability	Microgrid
	Objective: The main objective of this project is to propose a single-phase grid connected transformer-less solar micro converter with power decoupling capability.	
TEMAPS759, TEMAPS758, TEPGPS757, TEPGPS758	Dynamic Reserve Power Point Tracking in Grid-Connected Photovoltaic Power PlantsObjective: The main objective of this project is to improve the efficiency and reliability of grid- connected PV systems. DRPPT technology enables PV systems to dynamically adjust their operating point to maximize the power output under changing weather and grid conditions.	Microgrid
TEPGED189, TEMAED195, TEPGPS752, TEPGPS751, TEMAPS753, TEMAPS752	 Multiport Power Management Method with Partial Power Processing in a MV Solid- State Transformer for PV, Storage, and Fast-Charging EV Integration Objective: The main objective of this project is to develop a multiport power management method that optimizes the power flow between the PV system, energy storage system, fast- 	Microgrid

	charging EV station, and the MV SST.	
TEMACS83,	Control of ILC in an Autonomous AC-DC	Microgrid
TEMAPS633,	Hybrid Microgrid With Unbalanced	
TEMAPS634,	Nonlinear AC Loads	
TEMAPS635,		
TEPGCS77,	Objective : The main objective of this project is	
TEPGPS596,	provide control to a bidirectional interlinking	
TEPGPS597,	converter in an Autonomous AC-DC Hybrid	
TEPGPS598	Microgrid with Unbalanced Nonlinear AC Loads	
TEMAPS726,	Improving Voltage Ride-Through	Microgrid
TEMAPS727,	Capability of Grid-Tied Microgrid With	
TEPGPS725,	Harmonics Mitigation	
TEPGPS726		
	Objective : The main objective of this project is	
	to mitigate the harmonic distortions caused by	
	the nonlinear loads.	
TEMAPS729,	A New Multiport DC-DC Converter for DC	Microgrid
TEMAPS/30, TEMADS721	Microgrid Applications	
TEMAPE259		
TEPGPS728,	Objective : The main objective of this project	
TEPGPS729,	is to design and develop a high-performance	
TEPGPS730,		
TEPGPE231	converter that can efficiently and effectively	
	manage power flow within a DC microgrid	
	system.	
TEMAPS728,	Power Sharing in Three-Level NPC Inverter	Microgrid
TEPGPS727	Based Three-Phase Four-Wire Islanding	
	Microgrids	
	With Unbalanced Loads	
	Objective: The main objective three-level	
	Objective: The main objective three-level Neutral Point Clamped (NPC) inverter-based	
	Objective: The main objective three-level Neutral Point Clamped (NPC) inverter-based three-phase four-wire islanding microgrid	

	available power is distributed among the loads	
	in an efficient and equitable manner.	
TEMAPS742, TEMAPS743, TEPGPS741, TEPGPS742, TEMAPE261, TEPGPE233	 Performance Analysis of Voltage Multiplier Coupled Cascaded Boost Converter With Solar PV Integration for DC Microgrid Application Objective: The main objective of this project is to analyze the performance of voltage multiplier coupled with cascaded boost converter with solar integrated DC microgrid applications. 	Microgrid
TEMAPS745,	Leakage Current Mitigation Technique in	Microgrid
TEMAPS746, TEMAPS747,	Solar PV Array System Using Passive Filter	
TEMAPE262,	Objective: The main objective of this project	
TEPGPS744, TEPGPS745,	is to mitigate the leakage currents in solar PV	
TEPGPS746, TEPGPE234	systems by using passive filters.	

2023-2024 EEE CONTROL SYSTEMS IEEE TITLES

S.NO TEMAPE274, TEMACS94, TEPGPE244, TEPGCS88	TITLE Single-Stage Isolated DC/AC Converter With Continuous Dynamic Model and Controller Design	DOMAIN CONTROL SYSTEMS
	Objective : The main objective of this project is to propose a Single-Stage Isolated DC/AC Converter with Continuous Dynamic Model and Controller Design for photovoltaic grid connected applications.	
TEMACS70,	A Distributed Multimode Control Strategy	CONTROL
TEMAPE228,	for the Cascaded DC-DC Converter Applied	SYSTEMS
TEMAPS616,	to MVAC Grid-Tied PV System	
TEPGPS579,		
TEPGPE200,		

TEPGCS64	Objective: The main objective of the proposed method is to improve the robustness and applicability of the system by using MPPT control strategy.	
TEMAPS797,	Sliding Mode Control of a Four-Leg	CONTROL
TEPGPS796, TEMACS96	Dynamic Voltage Restorer in a Natural	SYSTEMS
TEMACS90, TEMACS90	Reference Frame	
	Objective: The main objective of this project is	
	to improve Power Quality in distribution system	
	with using SMC based DVR.	
TEMACS83,	Control of ILC in an Autonomous AC-DC	CONTROL
TEMAPS633,	Hybrid Microgrid With Unbalanced	SYSTEMS
TEMAPS634,	Nonlinear AC Loads	
TEMAPS635,		
TEPGCS77,	Objective : The main objective of this project is	
TEPGPS596,	provide control to a bidirectional interlinking	
TEPGPS597,	converter in an Autonomous AC-DC Hybrid	
TEPGPS598	Microgrid with Unbalanced Nonlinear AC Loads	

2023 - 2024 EEE POWER ELECTRONICS IEEE TITLES

S.NO TEMAPS763, TEMAPE266, TEMAED196, TEPGPS761, TEPGPE238, TEPGED190	TITLE Modified Deadbeat Predictive Current Control Method for Single-Phase AC–DC PFC Converter in EV Charging System Objective: The main objective of this project is to propose a modified deadbeat predictive current control method for single phase ac-dc converter used in an EV charging system.	DOMAIN AC-DC Converters
TEMAPE299, TEPGPE271, TEMAED214,	Universal Bridgeless Non isolated battery charger with wide output voltage range	AC-DC Converters

TEPGED208	Objective: The main objective of this project is to design a Universal Bridgeless Non isolated battery charger with wide output voltage range aimed to efficiently charge batteries from various sources.	
TEMAPS760, TEMAPS761, TEMAPE265, TEPGPS759, TEPGPS760, TEPGPE237	Analysis and Control of a Novel Transformer-less Grid-Connected Single- Stage Solar-Inverter using PR-ControllerObjective: The main objective of this project is to Control a Novel Transformer-less Grid- Connected Single-Stage Solar-Inverter by using PR-Controller.	AC-DC Converters
TEMAPE264, TEPGPE236	AThree-PhaseSingle-Stageac/dcConverterBased on SwissRectifier andThree-Level LLCTopologyObjective:The main objective of this project istopropose a three phase single stage ac-dcconverterbased on Swiss rectifier and three levelLLCtopology for grid connected applications.	AC-DC Converters
TEMAPS765, TEMAPS764, TEMAPE267, TEPGPS764, TEPGPS763, TEPGPE239	Power Quality Assessment of CPUC Based Solar Photovoltaic System With NLMS for Grid-Tied Applications Objective: The main objective of this project is to assess the power quality of CPUC based Solar Photovoltaic system with NLMS in grid-tied applications.	AC-DC Converter
TEMAPE271, TEMAED198, TEPGPE240, TEPGPE241, TEPGED191,	Single-Phase H-Bridge Rectifier Fed High- Speed SRM System Based on Integrated Power Control	AC-DC Converter

TEMAPE268, TEMAPE269, TEMAPE270	Objective: The main objective of this project is to achieve high efficiency and precise control of Single-Phase H-Bridge Rectifier Fed High-Speed SRM System based on Integrated Power Control.	
TEMAPE279, TEMAPE280, TEMAED199, TEPGPE249, TEPGPE250, TEPGED192	 An Isolated Single Input-Multiple Output DC-DC Modular Multilevel Converter for Fast Electric Vehicle Charging Objective: The main objective of this project is to propose an Isolated Single Input-Multiple Output DC-DC Modular Multilevel Converter for Fast Electric Vehicle Charging related applications. 	DC-DC Converters
TEMAPE290, TEPGPE260, TEMAED207, TEPGED201	 A Modified PI-Controller Based High Current Density DC–DC Converter for EV Charging Applications Objective: The main objective of this project is to propose a DC-DC converter with a modified PI controller to achieve the required output voltage and high current density. 	DC-DC Converters
TEMAPE276	A New Single DC Source Five-Level Boost	DC-DC
TEMAPE277, TEPGPE246,	Inverter Applicable to Grid-Tied Systems	Converters
TEPGPE247	Objective: The main objective of this project, to implement a new single DC source five-level boost inverter for grid connected applications.	
TEMAPS729,	A New Multiport DC-DC Converter for DC	DC-DC
TEMAPS730, TEMAPS731, TEMAPE259, TEPGPS728, TEPGPS729	Microgrid Applications	Converters
TEPGPS730,	Objective : The main objective of this project	
TEPGPE231	is to design and develop a high-performance	
	converter that can efficiently and effectively	
	manage nower flow within a DC microgrid	
	manage power now wrann a De microgriu	

	system.	
TEMAPS770, TEMAPE281, TEPGPS769, TEPGPE251	 Design and Analysis of High Gain DC-DC Boost Converter for Grid Connected Solar Photovoltaic System Objective: The main objective of this project is 	DC-DC Converters
	to propose a high-gain DC-DC converter for a rooftop solar photovoltaic (SPV) system with a multifunctional grid-tied inverter.	
TEMACS70, TEMAPE228, TEMAPS616, TEPGPS579, TEPGPE200, TEPGCS64	 A Distributed Multimode Control Strategy for the Cascaded DC-DC Converter Applied to MVAC Grid-Tied PV System Objective: The main objective of the proposed method is to improve the robustness and applicability of the system by using MPPT control strategy. 	DC-DC Converters
TEMAPS742, TEMAPS743, TEPGPS741, TEPGPS742, TEMAPE261, TEPGPE233	 Performance Analysis of Voltage Multiplier Coupled Cascaded Boost Converter With Solar PV Integration for DC Microgrid Application Objective: The main objective of this project is to analyze the performance of voltage multiplier coupled with cascaded boost converter with solar integrated DC microgrid applications. 	DC-DC Converters
TEMAPS735, TEMAED189, TEMAED190, TEMAPE260, TEPGPS734, TEPGPE232, TEPGED183, TEPGED184	A Single Inductor Multi-Port PowerConverter for Electric Vehicle ApplicationsObjective: The main objective of this projectis to propose a single inductor multi-portpower converter for Electric Vehicle	DC-DC Converters

	applications	
TEMAPE281,	A Single-Inductor Multi-Input Multilevel	DC-DC
TEMAPE282,	High Step-Up DC-DC Converter Based on	Converters
TEPGPE253,	Switched-Diode-Capacitor Cells	
TEPGPE254	for PV Applications	
	Objective: The main objective of this project is	
	to propose a Single-Inductor Multi-Input	
	Multilevel High Step-Up DC–DC Converter	
	Based on Switched-Diode-Capacitor Cells for PV	
	related Applications.	
TEMAPS805,	An Improved Control Strategy to Reduce	DC-AC
TEMAPS806,	Operating Hours of DG Genset in Solar PV-	Converter
TEPGPS805,	BES-DG Based AC Microgrid	
TEPGPS806,		
TEMAPE303,	Objective: The main objective of this project is	
TEPGPE275	to reducing the operating hours of the Dg Genset	
	in Solar PVBES-DG Based AC Micro grid by	
	an improved control strategy.	
TEMAPE274,	Single-Stage Isolated DC/AC Converter With	DC-AC
TEMACS94,	Continuous Dynamic Model and	Converter
TEPGPE244,	Controller Design	
TEPGCS88	Objective. The main shiesting of this project is	
	to propose a Single Stage Isolated DC/AC	
	Converter with Continuous Dynamic Model and	
	Controller Design for photovoltaic grid	
	connected applications.	
TEMAPS766.	Fault Analysis and Clearance in	DC-AC
TEMAPE272,	FL-APC DC-AC Converter	Converter
TEMAPS273,		
TEPGPS765,	Objective: The main objective of this project is	
TEPGPE242,	to analyze and clear the fault occurred during the	
TEPGPE243	operation of FL-APC DC-DC Converter.	
TEMAPS769,	A Partial Power Processing Structure	DC-AC

TEMAPE278, TEPGPS768, TEPGPE248,	Embedding Renewable Energy Source and Energy Storage Element for Islanded DC Microgrid	Converter
	implemented a partial power processing structure for PV based and energy storage system based islanded DC microgrid.	
TEMAPS768,	Soft-Switched Boost-Cuk-Type High Step-	DC-AC
TEMAPS767,	Up Converter for Grid-Tied With Half-	Converter
TEMAPE275,	Bridge Inverter	
TEPGPS766,		
TEPGPS767,	Objective: The main objective of this project is	
TEPGPE245	to efficiently convert DC power from a	
	renewable energy source, such as solar panels or	
	wind turbines, into AC power that can be fed	
	back into the power grid.	
TEMAPS776,	Converter Control during Low Voltage Ride	DC-AC
TEMAPE286,	through Operation for Grid-Interfaced Solar	Converter
TEPGPS775,	PV Battery Assisted System	
TEPGPE256		
	Objective: The main objective of this project is	
	to develop an efficient control technique for grid-	
	interfaced solar PV-based distributed generation	
	systems, allowing the DGS converter to remain	
	unbalanced power generation	
TEMAPE291,	Design and Implementation Bidirectional	DC-AC
TEPGPE261	DC-AC Converter for Energy Storage	Converters
	System	
	Objective: The main objective of this project is	
	to propose a bidirectional single-phase dc-ac	
	converter with triple port converter (T-PC) for	
	energy storage systems.	
TEMAPS790,	Three-Phase Multiport DC-AC Inverter for	DC-AC
TEMAPE288,	Interfacing Photovoltaic and Energy	Converter

TEPGPS789, TEPGPE258	Storage Systems to the Electric Grid	
TEI di E256	Objective: The main objective of this project is	
	to propose three-phase multiport DC-AC	
	inverters connect photovoltaic and energy storage	
	systems to the electric grid, enable the power	
	conversion and grid integration.	
	Single Dhase H Bridge Destifier Fed High	
TEMAFD271,	Sneed SRM System Based on Integrated	Converter
TEPGPE240	Power Control	Gonverter
TEPGPE241.		
TEPGED191,	Objective: The main objective of this project is	
TEMAPE268,	to achieve high efficiency and precise control of	
TEMAPE269,	Single-Phase H-Bridge Rectifier Fed High-Speed	
TEMAPE270	SRM System based on Integrated Power Control.	
TEMAPS745,	Leakage Current Mitigation Technique in	DC-AC
TEMAPS746, TEMAPS747,	Solar PV Array System Using Passive Filter	Converters
TEMAPE262,	Objective: The main objective of this project	
TEPGPS744, TEPGPS745.	is to mitigate the leakage currents in solar PV	
TEPGPS746,	systems by using passive filters.	
TEMAPE289	Electric Vehicle-to-Vehicle Energy Transfer	AC-AC
TEMAED206,	Using On-Board Converters	Converters
TEPGPE259,		
TEPGED200	Objective: The main objective of this project is	
	to transfer Energy from electric vehicle to vehicle	
	by using on-board converters.	
TEMAPS766,	Fault Analysis and Clearance in	Multilevel
TEMAPE272, TEMAPS273,	FL-APC DC-AC Converter	Inverters
TEPGPS765,	Objective: The main objective of this project is	
TEPGPE242,	to analyze and clear the fault occurred during the	
IEPGPE243	operation of FL-APC DC-DC Converter.	

TEMAPS771, TEMAPE282,	A Multilevel Inverter with Minimized Components Featuring Self-Balancing and	Inverters
TEPGPS770,	Boosting Capabilities for PV Applications	
TEPGPE252		
	Objective: The main objective of this project is	
	components and high boosting abilities in Solar	
	PV related applications.	
TEPCPE262	Battery Connected Multi-level Inverter Fed	Multilevel
TEPGPE263, TEMAED208	PMSM for Electric Vehicle Applications	Inverters
TEPGED202	Objective: The main objective of this project is	
	to design and simulate the cascaded H-bridge	
	five-level inverter using Sinusoidal Pulse Width	
	Modulation (SPWM) technique.	
TEMAPE276, TEMAPE277, TEPGPE246.	A New Single DC Source Five-Level Boost Inverter Applicable to Grid-Tied Systems	MULTILEVEL INVERTERS
TEPGPE247	Objective: The main objective of this project, to	
	implement a new single DC source five-level	
	boost inverter for grid connected applications.	
TEMAPE279.	An Isolated Single Input-Multiple Output	MULTILEVEL
TEMAPE280,	DC-DC Modular Multilevel Converter for	INVERTERS
TEMAED199,	Fast Electric Vehicle Charging	
TEPGPE249,		
TEPGPE250, TEPCED192	Objective: The main objective of this project is to propose an Isolated Single Input-Multiple	
	Output DC-DC Modular Multilevel Converter for	
	Fast Electric Vehicle Charging related	
	applications.	
TEMAPE281,	A Single-Inductor Multi-Input Multilevel	MULTILEVEL
TEPGPE253	підії Step- up ис-ис converter Based on Switched-Diode-Canacitor Cells	
TEPGPE254	for PV Applications	

Objective: The main objective of this project	is
to propose a Single-Inductor Multi-In	out
Multilevel High Step-Up DC-DC Conver	ter
Based on Switched-Diode-Capacitor Cells for	PV
related Applications.	

2023 - 2024 EEE ELECTRICAL DRIVES IEEE TITLES

S.NO		DOMAIN
TEMAPE271,	Single-Phase H-Bridge Rectifier Fed High-	AC Drives
IEMAED198,	Speed SRM System Based on Integrated	
TEPGPE240,	Power Control	
TEPGPE241,		
TEFGED191, TEMADE268	Objective: The main objective of this project is to	
TEMAPE269	achieve high efficiency and precise control of	
TEMAPE270	Single-Phase H-Bridge Rectifier Fed High-Speed	
	SRM System based on Integrated Power Control.	
	An Economical Solar Water Pump With Grid	AC Drives
TEMAPS736	and Battery Backup for Continuous Operation	
TEMSPS737.	and Battery Buckup for continuous operation	
TEMAED191.		
TEPGPS735,	Obio stime The main alientics of this provides the	
TEPGPS736,	Objective: The main objective of this project is to	
TEPGED185	develop a sustainable and reliable water pumping	
	system that utilizes solar energy as its primary	
	power source. The system should be capable of	
	providing continuous water supply to remote areas	
	with minimal maintenance and operating costs.	
TEMAPS735,	A Single Inductor Multi-Port Power Converter	DC Drives
TEMAED189,	for Flectric Vehicle Applications	
TEMAED190,	for Electric venicle Applications	
TEMAPE260,		
TEPGPS734,	Objective: The main objective of this project is to	
TEPGPE232,		
TEPGED183,	propose a single inductor multi-port power	
TEPGED184	converter for Electric Vehicle applications	
TEMAED209,	Modified Adaptive Filter Based UPQC for	DC Drives

TEPGED203	Battery SystemSupported HydroHydro DrivenPMSG PMSGObjective: The main objective of this project is to propose the modified adaptive filter based UPQC for Battery Supported hydro turbine driven PMSG system.	
TEMAED204, TEPGED197	 A Self-Tuning LCC/LCC System Based on Switch-Controlled Capacitors for Constant-Power Wireless Electric Vehicle Charging Objective: The main objective of this project is to provide a high-efficiency wireless charging system for electric vehicles that maintains a constant power output during charging. 	Electric Vehicles
TEMAPE299, TEPGPE271, TEMAED214, TEPGED208	 Universal Bridgeless Non isolated battery charger with wide output voltage range Objective: The main objective of this project is to design a Universal Bridgeless Non isolated battery charger with wide output voltage range aimed to efficiently charge batteries from various sources. 	Electric Vehicles
TEMAPS763, TEMAPE266, TEMAED196, TEPGPS761, TEPGPE238, TEPGED190	ModifiedDeadbeatPredictiveCurrentControlMethod for Single-PhaseAC-DCPFCConverter in EV Charging SystemObjective:The main objective of this project is to propose a modified deadbeat predictive current control method for single phase ac-dc converter used in an EV charging system.	Electric Vehicles
TEMAPS786, TEPGPS785, TEMAED205,	Distributed Energy Resources Based EV Charging Station With Seamless Connection to Grid	Electric Vehicles

TEPGED199		
	Objective: The main objective of this project is to	
	propose a system for charging electric vehicles	
	(EVs) using a common DC bus charging	
	infrastructure powered by hybrid renewable energy	
	sources, such as solar photovoltaic (PV) and fuel	
	cells.	
TEMAPE289,	Electric Vehicle-to-Vehicle Energy Transfer	Electric Vehicles
TEMAED206, TEPGPE259,	Using On-Board Converters	
TEPGED200	Objective: The main objective of this project is to	
	transfer Energy from electric vehicle to vehicle by	
	using on-board converters.	
TEMAPE290,	A Modified PI-Controller Based High Current	Electric Vehicles
TEPGPE260,	Density DC–DC Converter for EV Charging	
TEMAED207, TEDCED201	Applications	
	Objective: The main objective of this project is to	
	propose a DC-DC converter with a modified PI	
	controller to achieve the required output voltage and high	
	current density.	
TEMAPE279,	An Isolated Single Input-Multiple Output DC-	Electric Vehicles
TEMAPE280,	DC Modular Multilevel Converter for Fast	
TEMAED199,	Electric Vehicle Charging	
TEPGPE249,		
TEPGPE250,	Objective: The main objective of this project is to	
TEPGED192	propose an Isolated Single Input-Multiple Output	
	DC-DC Modular Multilevel Converter for Fast	
	Electric Vehicle Charging related applications.	51
TEMAPS/44,	High Efficiency Bidirectional LLC+C Resonant	Electric Vehicles
TEMAED194,	Converter with Parallel Transformers for	
TEPGP5/43,	Solar-Charged Electric vehicles	
TEPGED100	Objective: The main objective of this project is to	
	develop a power conversion system that can	
	efficiently and effectively convert the DC power	
	from a solar panel into AC power that can be used	
	to charge the battery of an electric vehicle.	

TEPGED189,	Multiport Power Management Method with	Electric Vehicles
TEMAED195,	Partial Power Processing in a MV Solid-State	
TEPGPS752,	Transformer for PV, Storage, and Fast-	
TEPGPS751,	Charging EV Integration	
TEMAPS753,		
TEMAPS752	Objective: The main objective of this project is to	
	develop a multiport power management method that	
	optimizes the power flow between the PV system,	
	energy storage system, fast-charging EV station,	
	and the MV SST.	
TEMAPS735,	A Single Inductor Multi-Port Power Converter	Electric Vehicles
TEMAED189,	for Electric Vehicle Applications	
TEMAED190,		
TEMAPE260,		
TEPGPS734,	Objective: The main objective of this project is to	
TEPGPE232,	objective. The main objective of this project is to	
TEPGED183,	propose a single inductor multi-port power	
TEPGED184	converter for Electric Vehicle applications	

PROJECT SUPPORTS FOR STUDENTS:

- PROJECT ABSTRACT
- ✤ PROJECT IEEE BASE PAPER/ REFERENCE PAPER
- ✤ PROJECT PRESENTATION IN PPT FORMAT
- ✤ PROJECT REVIEW ASSISTANCE FOR VIVA
- PROJECT DIAGRAMS
- ✤ PROJECT SOURCE CODE
- PROJECT REPORT
- ✤ PROJECT SCREEN SHOTS
- PROJECT DEMO
- ✤ PROJECT EXPLANATION
- ✤ PLAGARISM DOCUMENTATION
- ✤ INTERNATIONAL JOURNAL/CONFERENCE PUBLISHING
- ✤ PROJECT ACCEPTANCE LETTER
- ✤ PROJECT COMPLETION CERTIFICATE

The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments

Surekha 5.0 $\star \star \star \star \star$

5 star to the company for its outstanding support, new technology & support

4.5 ★ ★ ★ ★ ★ Very nice project support, the explanation

Very nice project support, the explanation with the kit were very useful and easy to understand...

Madhu Sudan Reddy 5.0 * * * * *

You guys always come up with exciting new technologies...impressive!!! Keep it up...

Our Customer Base

1-5-558, 1st Floor, 2nd Streat, Balaji Colony, Tirupati, Andhra Pradesh-517502.

+91 90303 33433 | 0877-2261612

www.takeoffprojects.com | info@takeoffprojects.com 🛛 🗗 🖿 🦉 💌 /TakeoffEduGroup