





## **ACADEMIC LIVE PROJECTS 2022-23** takeoff<sub>edu</sub>® 0 R G

## ELECTRICAL

- Power Systems
- Power Electronics
  Electrical Drives
  Control Systems
  Hardware & more

## +91 9030 333 433, +91 8776 681 444







startupindia





## takeoffedu<sup>®</sup> <sub>G R O U P</sub>

## **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                                | Objective                                                                                                                                                                                |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1    | TEMAPS703    | Optimal Energy Management Scheme of<br>Battery Supercapacitor-Based Bidirectional<br>Converter for DC Microgrid Applications<br>(Power Systems / Microgrids)                | The main objective of this project is<br>to propose a optimal Energy<br>Management Scheme of Battery<br>Supercapacitor-Based Bidirectional<br>Converter for DC Microgrid<br>Applications |
| 2    | TEPGPS702    | Optimal Energy Management Scheme of<br>Battery Supercapacitor-Based Bidirectional<br>Converter for DC Microgrid Applications<br>(Power Systems / Microgrids)                | The main objective of this project is<br>to propose a optimal Energy<br>Management Scheme of Battery<br>Supercapacitor-Based Bidirectional<br>Converter for DC Microgrid<br>Applications |
| 3    | TEMAED179    | A High Efficiency Modular EV Charger Using<br>Bridgeless and Resonant Converters<br>(Electrical Drives / Electrical Vehicles)                                               | The main objective of this project is<br>to charge the Electric Vehicle by<br>using bridgeless and Resonant<br>Converters.                                                               |
| 4    | TEPGED173    | A High Efficiency Modular EV Charger Using<br>Bridgeless and Resonant Converters<br>(Electrical Drives / Electrical Vehicles)                                               | The main objective of this project is<br>to charge the Electric Vehicle by<br>using bridgeless and Resonant<br>Converters.                                                               |
| 5    | TEMAPS694    | Analysis of the Capacitor-Less D-STATCOM for<br>Voltage Profile Improvement in Distribution<br>Network with High PV Penetration<br>(Power Systems / Distribution Systems)   | The main objective of this project is<br>to improve the voltage profile in<br>distribution network by using<br>capacitor less D-STATCOM.                                                 |
| 6    | TEMAPS695    | Analysis of the Capacitor-Less D-STATCOM for<br>Voltage Profile Improvement in Distribution<br>Network with High PV Penetration<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to improve the voltage profile in<br>distribution network by using<br>capacitor less D-STATCOM.                                                 |
| 7    | TEMAPS696    | Analysis of the Capacitor-Less D-STATCOM for<br>Voltage Profile Improvement in Distribution<br>Network with High PV Penetration<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to improve the voltage profile in<br>distribution network by using<br>capacitor less D-STATCOM.                                                 |
| 8    | TEPGPS693    | Analysis of the Capacitor-Less D-STATCOM for<br>Voltage Profile Improvement in Distribution<br>Network with High PV Penetration<br>(Power Systems / Distribution Systems)   | The main objective of this project is<br>to improve the voltage profile in<br>distribution network by using<br>capacitor less D-STATCOM.                                                 |
| 9    | TEPGPS694    | Analysis of the Capacitor-Less D-STATCOM for<br>Voltage Profile Improvement in Distribution<br>Network with High PV Penetration<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to improve the voltage profile in<br>distribution network by using<br>capacitor less D-STATCOM.                                                 |
| 10   | TEPGPS695    | Analysis of the Capacitor-Less D-STATCOM for<br>Voltage Profile Improvement in Distribution<br>Network with High PV Penetration<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to improve the voltage profile in<br>distribution network by using<br>capacitor less D-STATCOM.                                                 |
| 11   | TEMAPS693    | A New Model Predictive Current Control<br>Strategy for Hybrid Energy Storage System<br>Considering the SOC of the Supercapacitor<br>(Power Systems / Hybrid Systems)        | The main objective of this project is<br>to propose a new model predictive<br>current control strategy for HESS by<br>considering the SOC of the                                         |

Website: www.takeoffprojects.com



| S.No           | Project Code | Project Name                                                                                                                                                         | Objective                                                                                                                                                                                                                                   |
|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              |                                                                                                                                                                      | supercapacitor.                                                                                                                                                                                                                             |
| 12             | TEPGPS692    | A New Model Predictive Current Control<br>Strategy for Hybrid Energy Storage System<br>Considering the SOC of the Supercapacitor<br>(Power Systems / Hybrid Systems) | The main objective of this project is<br>to propose a new model predictive<br>current control strategy for HESS by<br>considering the SOC of the<br>supercapacitor.                                                                         |
| 13             | TEMAPS691    | A Single-phase Transformerless<br>Common-ground Type PV Inverter with Active<br>Power Decoupling<br>(Power Systems / Microgrids)                                     | The main objective of this project is<br>to propose a single-phase<br>transformerless common-ground<br>type PV inverter with active power<br>decoupling to overcome the<br>problems of leakage current and<br>power quality related issues. |
| 14             | TEMAPS692    | A Single-phase Transformerless<br>Common-ground Type PV Inverter with Active<br>Power Decoupling<br>(Power Systems / Solar Power Generation)                         | The main objective of this project is<br>to propose a single-phase<br>transformerless common-ground<br>type PV inverter with active power<br>decoupling to overcome the<br>problems of leakage current and<br>power quality related issues. |
| 15             | TEPGPS690    | A Single-phase Transformerless<br>Common-ground Type PV Inverter with Active<br>Power Decoupling<br>(Power Systems / Microgrids)                                     | The main objective of this project is<br>to propose a single-phase<br>transformerless common-ground<br>type PV inverter with active power<br>decoupling to overcome the<br>problems of leakage current and<br>power quality related issues. |
| 16             | TEPGPS691    | A Single-phase Transformerless<br>Common-ground Type PV Inverter with Active<br>Power Decoupling<br>(Power Systems / Solar Power Generation)                         | The main objective of this project is<br>to propose a single-phase<br>transformerless common-ground<br>type PV inverter with active power<br>decoupling to overcome the<br>problems of leakage current and<br>power quality related issues. |
| 17             | TEMAPS599    | Sliding Mode Control for Grid Integration of<br>Wind Power System Based on Direct Drive<br>PMSG<br>(Power Systems / Wind Power Generation)                           | The main objective of the proposed<br>method is to provide the dynamic<br>performance during low/high voltage<br>conditions.                                                                                                                |
| 18             | TEMACS64     | Sliding Mode Control for Grid Integration of<br>Wind Power System Based on Direct Drive<br>PMSG<br>(Control Systems)                                                 | The main objective of the proposed<br>method is to provide the dynamic<br>performance during low/high voltage<br>conditions.                                                                                                                |
| 19             | TEPGPS562    | Sliding Mode Control for Grid Integration of<br>Wind Power System Based on Direct Drive<br>PMSG<br>(Power Systems / Wind Power Generation)                           | The main objective of the proposed<br>method is to provide the dynamic<br>performance during low/high voltage<br>conditions.                                                                                                                |
| 20<br>( Page 2 | TEPGCS58     | Sliding Mode Control for Grid Integration of                                                                                                                         | The main objective of the proposed<br>Email: info@takeoffprojects.com                                                                                                                                                                       |



| S.No | Project Code | Project Name                                                                                                                                                 | Objective                                                                                                                                                                       |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | Wind Power System Based on Direct Drive<br>PMSG<br>(Control Systems)                                                                                         | method is to provide the dynamic performance during low/high voltage conditions.                                                                                                |
| 21   | TEMAPS690    | Sliding Mode Control for Grid Integration of<br>Wind Power System Based on Direct Drive<br>PMSG<br>(Power Systems / Power Quality)                           | The main objective of the proposed method is to provide the dynamic performance during low/high voltage conditions.                                                             |
| 22   | TEPGPS689    | Sliding Mode Control for Grid Integration of<br>Wind Power System Based on Direct Drive<br>PMSG<br>(Power Systems / Power Quality)                           | The main objective of the proposed<br>method is to provide the dynamic<br>performance during low/high voltage<br>conditions.                                                    |
| 23   | TEMAPS688    | PV Integrated Multifunctional Off-Board EV<br>Charger with Improved Grid Power Quality<br>(Power Systems / Power Quality)                                    | The main objective of this project is<br>to power the electric vehicle and<br>improve the power quality by using<br>Adaptive Notch Filter based efficient<br>control algorithm. |
| 24   | TEMAPS689    | PV Integrated Multifunctional Off-Board EV<br>Charger with Improved Grid Power Quality<br>(Power Systems / Solar Power Generation)                           | The main objective of this project is<br>to power the electric vehicle and<br>improve the power quality by using<br>Adaptive Notch Filter based efficient<br>control algorithm. |
| 25   | TEPGPS687    | PV Integrated Multifunctional Off-Board EV<br>Charger with Improved Grid Power Quality<br>(Power Systems / Power Quality)                                    | The main objective of this project is<br>to power the electric vehicle and<br>improve the power quality by using<br>Adaptive Notch Filter based efficient<br>control algorithm. |
| 26   | TEPGPS688    | PV Integrated Multifunctional Off-Board EV<br>Charger with Improved Grid Power Quality<br>(Power Systems / Solar Power Generation)                           | The main objective of this project is<br>to power the electric vehicle and<br>improve the power quality by using<br>Adaptive Notch Filter based efficient<br>control algorithm. |
| 27   | TEMAED175    | PV Integrated Multifunctional Off-Board EV<br>Charger with Improved Grid Power Quality<br>(Electrical Drives / Electrical Vehicles)                          | The main objective of this project is<br>to power the electric vehicle and<br>improve the power quality by using<br>Adaptive Notch Filter based efficient<br>control algorithm. |
| 28   | TEPGED169    | PV Integrated Multifunctional Off-Board EV<br>Charger with Improved Grid Power Quality<br>(Electrical Drives / Electrical Vehicles)                          | The main objective of this project is<br>to power the electric vehicle and<br>improve the power quality by using<br>Adaptive Notch Filter based efficient<br>control algorithm. |
| 29   | TEMAPS686    | Novel Compensation Methods Using Energy<br>Storage System (ESS) in Islanded Unbalanced<br>Single-Three-Phase Multimicrogrids<br>(Power Systems / Microgrids) | The main objective of this project is<br>to reduce power quality issues by<br>integrating single phase microgrids<br>and unbalanced loads to three<br>phase MGs.                |

| S.No           | Project Code | Project Name                                                                                                                                                                    | Objective                                                                                                                                                                              |
|----------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 30             | TEMAPS687    | Novel Compensation Methods Using Energy<br>Storage System (ESS) in Islanded Unbalanced<br>Single-Three-Phase Multimicrogrids<br>(Power Systems / Power Quality)                 | The main objective of this project is<br>to reduce power quality issues by<br>integrating single phase microgrids<br>and unbalanced loads to three<br>phase MGs.                       |
| 31             | TEPGPS685    | Novel Compensation Methods Using Energy<br>Storage System (ESS) in Islanded Unbalanced<br>Single-Three-Phase Multimicrogrids<br>(Power Systems / Microgrids)                    | The main objective of this project is<br>to reduce power quality issues by<br>integrating single phase microgrids<br>and unbalanced loads to three<br>phase MGs.                       |
| 32             | TEPGPS686    | Novel Compensation Methods Using Energy<br>Storage System (ESS) in Islanded Unbalanced<br>Single-Three-Phase Multimicrogrids<br>(Power Systems / Power Quality)                 | The main objective of this project is<br>to reduce power quality issues by<br>integrating single phase microgrids<br>and unbalanced loads to three<br>phase MGs.                       |
| 33             | TEMAPS685    | Nonlinear Control Design and Stability Analysis<br>of Single Phase Half Bridge Interleaved Buck<br>Shunt Active Power Filter<br>(Power Systems / Power Quality)                 | The main objective of this project is<br>to control, design and analyze the<br>stability of the single phase half<br>bridge interleaved buck shunt active<br>power filter.             |
| 34             | TEPGPS684    | Nonlinear Control Design and Stability Analysis<br>of Single Phase Half Bridge Interleaved Buck<br>Shunt Active Power Filter<br>(Power Systems / Power Quality)                 | The main objective of this project is<br>to control, design and analyze the<br>stability of the single phase half<br>bridge interleaved buck shunt active<br>power filter.             |
| 35             | TEMAPS682    | Enhanced Control of DFIG Based Wind Energy<br>Conversion System under Unbalanced Grid<br>Voltages Using Mixed Generalized Integrator<br>(Power Systems / Hybrid Systems)        | The main objective of this project is<br>to propose an enhanced control<br>strategy for a DFIG operating under<br>unbalanced grid voltages by using a<br>mixed generalized integrator. |
| 36             | TEMAPS683    | Enhanced Control of DFIG Based Wind Energy<br>Conversion System under Unbalanced Grid<br>Voltages Using Mixed Generalized Integrator<br>(Power Systems / Power Quality)         | The main objective of this project is<br>to propose an enhanced control<br>strategy for a DFIG operating under<br>unbalanced grid voltages by using a<br>mixed generalized integrator. |
| 37             | TEMAPS684    | Enhanced Control of DFIG Based Wind Energy<br>Conversion System under Unbalanced Grid<br>Voltages Using Mixed Generalized Integrator<br>(Power Systems / Wind Power Generation) | The main objective of this project is<br>to propose an enhanced control<br>strategy for a DFIG operating under<br>unbalanced grid voltages by using a<br>mixed generalized integrator. |
| 38             | TEPGPS681    | Enhanced Control of DFIG Based Wind Energy<br>Conversion System under Unbalanced Grid<br>Voltages Using Mixed Generalized Integrator<br>(Power Systems / Hybrid Systems)        | The main objective of this project is<br>to propose an enhanced control<br>strategy for a DFIG operating under<br>unbalanced grid voltages by using a<br>mixed generalized integrator. |
| 39<br>( Page 4 | TEPGPS682    | Enhanced Control of DFIG Based Wind Energy<br>Conversion System under Unbalanced Grid                                                                                           | The main objective of this project is<br>to propose an enhanced control<br>Email: info@takeoffprojects.com                                                                             |



| S.No | Project Code | Project Name                                                                                                                                                                    | Objective                                                                                                                                                                                           |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | Voltages Using Mixed Generalized Integrator<br>(Power Systems / Power Quality)                                                                                                  | strategy for a DFIG operating under<br>unbalanced grid voltages by using a<br>mixed generalized integrator.                                                                                         |
| 40   | TEPGPS683    | Enhanced Control of DFIG Based Wind Energy<br>Conversion System under Unbalanced Grid<br>Voltages Using Mixed Generalized Integrator<br>(Power Systems / Wind Power Generation) | The main objective of this project is<br>to propose an enhanced control<br>strategy for a DFIG operating under<br>unbalanced grid voltages by using a<br>mixed generalized integrator.              |
| 41   | TEMAPS680    | Control of Solar PV Arrays Based Microgrid<br>Intertied to a 3-Phase 4-Wire Distribution<br>Network<br>(Power Systems / Microgrids)                                             | The main objective of this project is<br>to control the solar PV array based<br>microgrid intertied to a 3-phase<br>4-wire distribution network                                                     |
| 42   | TEMAPS681    | Control of Solar PV Arrays Based Microgrid<br>Intertied to a 3-Phase 4-Wire Distribution<br>Network<br>(Power Systems / Power Quality)                                          | The main objective of this project is<br>to control the solar PV array based<br>microgrid intertied to a 3-phase<br>4-wire distribution network                                                     |
| 43   | TEPGPS679    | Control of Solar PV Arrays Based Microgrid<br>Intertied to a 3-Phase 4-Wire Distribution<br>Network<br>(Power Systems / Microgrids)                                             | The main objective of this project is<br>to control the solar PV array based<br>microgrid intertied to a 3-phase<br>4-wire distribution network                                                     |
| 44   | TEPGPS680    | Control of Solar PV Arrays Based Microgrid<br>Intertied to a 3-Phase 4-Wire Distribution<br>Network<br>(Power Systems / Power Quality)                                          | The main objective of this project is<br>to control the solar PV array based<br>microgrid intertied to a 3-phase<br>4-wire distribution network                                                     |
| 45   | TEMAPS678    | Control of Single-Phase Distributed PV-Battery<br>Microgrid for Smooth Mode Transition with<br>Improved Power Quality<br>(Power Systems / Microgrids)                           | The main objective of this project is<br>to enhance the reliability and<br>accessibility of electricity in remote<br>areas by using multiple parallel<br>photovoltaic inverters based<br>microgrid. |
| 46   | TEMAPS679    | Control of Single-Phase Distributed PV-Battery<br>Microgrid for Smooth Mode Transition with<br>Improved Power Quality<br>(Power Systems / Power Quality)                        | The main objective of this project is<br>to enhance the reliability and<br>accessibility of electricity in remote<br>areas by using multiple parallel<br>photovoltaic inverters based<br>microgrid. |
| 47   | TEPGPS677    | Control of Single-Phase Distributed PV-Battery<br>Microgrid for Smooth Mode Transition with<br>Improved Power Quality<br>(Power Systems / Microgrids)                           | The main objective of this project is<br>to enhance the reliability and<br>accessibility of electricity in remote<br>areas by using multiple parallel<br>photovoltaic inverters based<br>microgrid. |
| 48   | TEPGPS678    | Control of Single-Phase Distributed PV-Battery<br>Microgrid for Smooth Mode Transition with<br>Improved Power Quality<br>(Power Systems / Power Quality)                        | The main objective of this project is<br>to enhance the reliability and<br>accessibility of electricity in remote<br>areas by using multiple parallel<br>photovoltaic inverters based               |

|                            |                                      | Project Name                                                                                                                                       | Objective                                                                                                                                                                                                       |
|----------------------------|--------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                                      |                                                                                                                                                    | microgrid.                                                                                                                                                                                                      |
| 49                         | TEMAPS677                            | A Unified Control of Grid-Interactive Off-Board<br>EV Battery Charger with Improved Power<br>Quality<br>(Power Systems / Power Quality)            | The main objective of this project is<br>to design a multifunctional EV<br>charging infrastructure with G2V,<br>V2G, C4G, and V2L operation<br>modes by using STF and<br>SMC-DLVC based control algorithm.      |
| 50                         | TEPGPS676                            | A Unified Control of Grid-Interactive Off-Board<br>EV Battery Charger with Improved Power<br>Quality<br>(Power Systems / Power Quality)            | The main objective of this project is<br>to design a multifunctional EV<br>charging infrastructure with G2V,<br>V2G, C4G, and V2L operation<br>modes by using STF and<br>SMC-DLVC based control algorithm.      |
| 51                         | TEMAED174                            | A Unified Control of Grid-Interactive Off-Board<br>EV Battery Charger with Improved Power<br>Quality<br>(Electrical Drives / Electrical Vehicles)  | The main objective of this project is<br>to design a multifunctional EV<br>charging infrastructure with G2V,<br>V2G, C4G, and V2L operation<br>modes by using STF and<br>SMC-DLVC based control algorithm.      |
| 52                         | TEPGED168                            | A Unified Control of Grid-Interactive Off-Board<br>EV Battery Charger with Improved Power<br>Quality<br>(Electrical Drives / Electrical Vehicles)  | The main objective of this project is<br>to design a multifunctional EV<br>charging infrastructure with G2V,<br>V2G, C4G, and V2L operation<br>modes by using STF and<br>SMC-DLVC based control algorithm.      |
| 53                         | TEMACS92                             | Performance Improvement of Weak<br>Grid-connected Wind Energy System Using<br>FLSRF Controlled DSTATCOM<br>(Control Systems)                       | The main objective is to mitigate the challenges associated with wind power penetration in the remotely located grid in the presence of unbalanced linear and non-linear loads Using FLSRF Controlled DSTATCOM. |
| 54                         | TEPGCS86                             | Performance Improvement of Weak<br>Grid-connected Wind Energy System Using<br>FLSRF Controlled DSTATCOM<br>(Control Systems)                       | The main objective is to mitigate the challenges associated with wind power penetration in the remotely located grid in the presence of unbalanced linear and non-linear loads Using FLSRF Controlled DSTATCOM. |
| 55                         | TEMAPS650                            | Performance Improvement of Weak<br>Grid-connected Wind Energy System Using<br>FLSRF Controlled DSTATCOM<br>(Power Systems / Wind Power Generation) | The main objective is to mitigate the challenges associated with wind power penetration in the remotely located grid in the presence of unbalanced linear and non-linear loads Using FLSRF Controlled DSTATCOM. |
| 56<br>( Page 6<br>Website: | TEPGPS613<br>)<br>www.takeoffproject | Performance Improvement of Weak<br>Grid-connected Wind Energy System Using                                                                         | The main objective is to mitigate the<br>challenges associated with wind<br>Email: info@takeoffprojects.com<br>ne: +91 9030333433, +91 8776681444                                                               |

## **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                                    | Objective                                                                                                                                                                                                                                                            |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | FLSRF Controlled DSTATCOM<br>(Power Systems / Wind Power Generation)                                                                                                            | power penetration in the remotely<br>located grid in the presence of<br>unbalanced linear and non-linear<br>loads Using FLSRF Controlled<br>DSTATCOM.                                                                                                                |
| 57   | TEMAPS651    | Performance Improvement of Weak<br>Grid-connected Wind Energy System Using<br>FLSRF Controlled DSTATCOM<br>(Power Systems / Power Quality)                                      | The main objective is to mitigate the challenges associated with wind power penetration in the remotely located grid in the presence of unbalanced linear and non-linear loads Using FLSRF Controlled DSTATCOM.                                                      |
| 58   | TEPGPS614    | Performance Improvement of Weak<br>Grid-connected Wind Energy System Using<br>FLSRF Controlled DSTATCOM<br>(Power Systems / Power Quality)                                      | The main objective is to mitigate the challenges associated with wind power penetration in the remotely located grid in the presence of unbalanced linear and non-linear loads Using FLSRF Controlled DSTATCOM.                                                      |
| 59   | TEMACS91     | Performance Assessment of Three Phase NPC<br>Based Grid Integrated Single Stage Solar PV<br>System with Reduced DC-bus Capacitor<br>(Control Systems)                           | The main objective this paper is to<br>reduce the fluctuations in the<br>DC-bus voltage under the change in<br>solar insolation level and provides<br>appropriate voltage balancing for<br>Three Phase NPC Based Grid<br>Integrated Single Stage Solar PV<br>System. |
| 60   | TEPGCS85     | Performance Assessment of Three Phase NPC<br>Based Grid Integrated Single Stage Solar PV<br>System with Reduced DC-bus Capacitor<br>(Control Systems)                           | The main objective this paper is to<br>reduce the fluctuations in the<br>DC-bus voltage under the change in<br>solar insolation level and provides<br>appropriate voltage balancing for<br>Three Phase NPC Based Grid<br>Integrated Single Stage Solar PV<br>System. |
| 61   | TEMAPE236    | Performance Assessment of Three Phase NPC<br>Based Grid Integrated Single Stage Solar PV<br>System with Reduced DC-bus Capacitor<br>(Power Electronics / Multilevel Converters) | The main objective this paper is to<br>reduce the fluctuations in the<br>DC-bus voltage under the change in<br>solar insolation level and provides<br>appropriate voltage balancing for<br>Three Phase NPC Based Grid<br>Integrated Single Stage Solar PV<br>System. |
| 62   | TEPGPE208    | Performance Assessment of Three Phase NPC<br>Based Grid Integrated Single Stage Solar PV<br>System with Reduced DC-bus Capacitor<br>(Power Electronics / Multilevel Converters) | The main objective this paper is to<br>reduce the fluctuations in the<br>DC-bus voltage under the change in<br>solar insolation level and provides<br>appropriate voltage balancing for<br>Three Phase NPC Based Grid<br>Integrated Single Stage Solar PV            |

Website: www.takeoffprojects.com

| S.No           | Project Code | Project Name                                                                                                                                                                                     | Objective                                                                                                                                                                                                                                                            |
|----------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                |              |                                                                                                                                                                                                  | System.                                                                                                                                                                                                                                                              |
| 63             | TEMAPS649    | Performance Assessment of Three Phase NPC<br>Based Grid Integrated Single Stage Solar PV<br>System with Reduced DC-bus Capacitor<br>(Power Systems / Solar Power Generation)                     | The main objective this paper is to<br>reduce the fluctuations in the<br>DC-bus voltage under the change in<br>solar insolation level and provides<br>appropriate voltage balancing for<br>Three Phase NPC Based Grid<br>Integrated Single Stage Solar PV<br>System. |
| 64             | TEPGPS612    | Performance Assessment of Three Phase NPC<br>Based Grid Integrated Single Stage Solar PV<br>System with Reduced DC-bus Capacitor<br>(Power Systems / Solar Power Generation)                     | The main objective this paper is to<br>reduce the fluctuations in the<br>DC-bus voltage under the change in<br>solar insolation level and provides<br>appropriate voltage balancing for<br>Three Phase NPC Based Grid<br>Integrated Single Stage Solar PV<br>System. |
| 65             | TEMACS90     | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Control Systems)                       | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid.                             |
| 66             | TEPGCS84     | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Control Systems)                       | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid.                             |
| 67             | TEMAPS646    | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Power Systems / Hybrid Systems)        | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid.                             |
| 68             | TEMAPS647    | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Power Systems / Wind Power Generation) | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid.                             |
| 69<br>( Page 8 | TEMAPS648    | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid                                            | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>Email: info@takeoffprojects.com                                                                                  |
|                |              |                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                      |

| S.No | Project Code | Project Name                                                                                                                                                                                      | Objective                                                                                                                                                                                                                                |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | (Power Systems / Solar Power Generation)                                                                                                                                                          | in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid.                                                                                                                                                     |
| 70   | TEPGPS609    | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Power Systems / Hybrid Systems)         | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid. |
| 71   | TEPGPS610    | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Power Systems / Wind Power Generation)  | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid. |
| 72   | TEPGPS611    | Multi-Objective Control Strategy for Power<br>Quality Improvement in Wind-Solar Distributed<br>Generation System under Harmonically<br>Distorted Grid<br>(Power Systems / Solar Power Generation) | The main object of this project is to<br>provide better dynamic response<br>during sudden system variations<br>and for Power Quality Improvement<br>in Wind-Solar Distributed<br>Generation System under<br>Harmonically Distorted Grid. |
| 73   | TEMACS89     | Multilevel Converter With Nearest Level<br>Control for Integrating Solar Photovoltaic<br>System<br>(Control Systems)                                                                              | The main objective of this project is<br>Implementation of solar multilevel<br>converter based solar photovoltaic<br>system for medium voltage<br>applications with nearest level<br>control.                                            |
| 74   | TEPGCS83     | Multilevel Converter With Nearest Level<br>Control for Integrating Solar Photovoltaic<br>System<br>(Control Systems)                                                                              | The main objective of this project is<br>Implementation of solar multilevel<br>converter based solar photovoltaic<br>system for medium voltage<br>applications with nearest level<br>control.                                            |
| 75   | TEMAPE235    | Multilevel Converter With Nearest Level<br>Control for Integrating Solar Photovoltaic<br>System<br>(Power Electronics / Multilevel Converters)                                                    | The main objective of this project is<br>Implementation of solar multilevel<br>converter based solar photovoltaic<br>system for medium voltage<br>applications with nearest level<br>control.                                            |
| 76   | TEPGPE207    | Multilevel Converter With Nearest Level<br>Control for Integrating Solar Photovoltaic<br>System<br>(Power Electronics / Multilevel Converters)                                                    | The main objective of this project is<br>Implementation of solar multilevel<br>converter based solar photovoltaic<br>system for medium voltage<br>applications with nearest level<br>control.                                            |

| S.No | Project Code | Project Name                                                                                                                                                                                                      | Objective                                                                                                                                                                                     |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 77   | TEMAPS645    | Multilevel Converter With Nearest Level<br>Control for Integrating Solar Photovoltaic<br>System<br>(Power Systems / Solar Power Generation)                                                                       | The main objective of this project is<br>Implementation of solar multilevel<br>converter based solar photovoltaic<br>system for medium voltage<br>applications with nearest level<br>control. |
| 78   | TEPGPS608    | Multilevel Converter With Nearest Level<br>Control for Integrating Solar Photovoltaic<br>System<br>(Power Systems / Solar Power Generation)                                                                       | The main objective of this project is<br>Implementation of solar multilevel<br>converter based solar photovoltaic<br>system for medium voltage<br>applications with nearest level<br>control. |
| 79   | TEMACS88     | Mitigation of Sub synchronous Resonance for<br>Grid-Connected Inverters in<br>Series-Compensated Weak Power Grids<br>Through Observed Q-Axis Grid Voltage<br>Feedback<br>(Control Systems)                        | The main objective of this project is<br>the Performance improvement of<br>weak power grid by using series<br>compensators with Q-axis grid<br>voltage feedback                               |
| 80   | TEPGCS82     | Mitigation of Sub synchronous Resonance for<br>Grid-Connected Inverters in<br>Series-Compensated Weak Power Grids<br>Through Observed Q-Axis Grid Voltage<br>Feedback<br>(Control Systems)                        | The main objective of this project is<br>the Performance improvement of<br>weak power grid by using series<br>compensators with Q-axis grid<br>voltage feedback                               |
| 81   | TEMAPS644    | Mitigation of Sub synchronous Resonance for<br>Grid-Connected Inverters in<br>Series-Compensated Weak Power Grids<br>Through Observed Q-Axis Grid Voltage<br>Feedback<br>(Power Systems / Microgrids)             | The main objective of this project is<br>the Performance improvement of<br>weak power grid by using series<br>compensators with Q-axis grid<br>voltage feedback                               |
| 82   | TEPGPS607    | Mitigation of Sub synchronous Resonance for<br>Grid-Connected Inverters in<br>Series-Compensated Weak Power Grids<br>Through Observed Q-Axis Grid Voltage<br>Feedback<br>(Power Systems / Microgrids)             | The main objective of this project is<br>the Performance improvement of<br>weak power grid by using series<br>compensators with Q-axis grid<br>voltage feedback                               |
| 83   | TEMAPE234    | Mitigation of Sub synchronous Resonance for<br>Grid-Connected Inverters in<br>Series-Compensated Weak Power Grids<br>Through Observed Q-Axis Grid Voltage<br>Feedback<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>the Performance improvement of<br>weak power grid by using series<br>compensators with Q-axis grid<br>voltage feedback                               |
| 84   | TEPGPE206    | Mitigation of Sub synchronous Resonance for<br>Grid-Connected Inverters in<br>Series-Compensated Weak Power Grids<br>Through Observed Q-Axis Grid Voltage<br>Feedback<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>the Performance improvement of<br>weak power grid by using series<br>compensators with Q-axis grid<br>voltage feedback                               |



| S.No            | Project Code | Project Name                                                                                                                                                                              | Objective                                                                                                                                                             |
|-----------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 85              | TEMACS87     | Impacts of Phase-Locked Loop Dynamic on<br>the Stability of DC-Link Voltage Control in<br>Voltage Source Converter Integrated to Weak<br>Grid<br>(Control Systems)                        | The main objective of the proposed<br>method is to maintain dynamic<br>stability of dc-link voltage Control in<br>Voltage Source Converter Integrated<br>to Weak Grid |
| 86              | TEPGCS81     | Impacts of Phase-Locked Loop Dynamic on<br>the Stability of DC-Link Voltage Control in<br>Voltage Source Converter Integrated to Weak<br>Grid<br>(Control Systems)                        | The main objective of the proposed<br>method is to maintain dynamic<br>stability of dc-link voltage Control in<br>Voltage Source Converter Integrated<br>to Weak Grid |
| 87              | TEMAPS643    | Impacts of Phase-Locked Loop Dynamic on<br>the Stability of DC-Link Voltage Control in<br>Voltage Source Converter Integrated to Weak<br>Grid<br>(Power Systems / Microgrids)             | The main objective of the proposed<br>method is to maintain dynamic<br>stability of dc-link voltage Control in<br>Voltage Source Converter Integrated<br>to Weak Grid |
| 88              | TEPGPS606    | Impacts of Phase-Locked Loop Dynamic on<br>the Stability of DC-Link Voltage Control in<br>Voltage Source Converter Integrated to Weak<br>Grid<br>(Power Systems / Microgrids)             | The main objective of the proposed<br>method is to maintain dynamic<br>stability of dc-link voltage Control in<br>Voltage Source Converter Integrated<br>to Weak Grid |
| 89              | TEMAPE233    | Impacts of Phase-Locked Loop Dynamic on<br>the Stability of DC-Link Voltage Control in<br>Voltage Source Converter Integrated to Weak<br>Grid<br>(Power Electronics / DC - AC Converters) | The main objective of the proposed<br>method is to maintain dynamic<br>stability of dc-link voltage Control in<br>Voltage Source Converter Integrated<br>to Weak Grid |
| 90              | TEPGPE205    | Impacts of Phase-Locked Loop Dynamic on<br>the Stability of DC-Link Voltage Control in<br>Voltage Source Converter Integrated to Weak<br>Grid<br>(Power Electronics / DC - AC Converters) | The main objective of the proposed<br>method is to maintain dynamic<br>stability of dc-link voltage Control in<br>Voltage Source Converter Integrated<br>to Weak Grid |
| 91              | TEMACS86     | Impact of DC-Bus Voltage Control on<br>Synchronization Stability of Grid-Tied Inverters<br>(Control Systems)                                                                              | The main objective of the proposed<br>system is to eliminate the<br>inaccuracies and increase the<br>steady-state and transient stability<br>of Grid-Tied Inverters   |
| 92              | TEPGCS80     | Impact of DC-Bus Voltage Control on<br>Synchronization Stability of Grid-Tied Inverters<br>(Control Systems)                                                                              | The main objective of the proposed<br>system is to eliminate the<br>inaccuracies and increase the<br>steady-state and transient stability<br>of Grid-Tied Inverters   |
| 93              | TEMAPS642    | Impact of DC-Bus Voltage Control on<br>Synchronization Stability of Grid-Tied Inverters<br>(Power Systems / Microgrids)                                                                   | The main objective of the proposed<br>system is to eliminate the<br>inaccuracies and increase the<br>steady-state and transient stability<br>of Grid-Tied Inverters   |
| 94<br>( Page 11 | TEPGPS605    | Impact of DC-Bus Voltage Control on<br>Synchronization Stability of Grid-Tied Inverters                                                                                                   | The main objective of the proposed system is to eliminate the                                                                                                         |
| (Page 11        | )            |                                                                                                                                                                                           | Email: info@takeoffprojects.con                                                                                                                                       |

| S.No             | Project Code | Project Name                                                                                                                                                            | Objective                                                                                                                                                             |
|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | (Power Systems / Microgrids)                                                                                                                                            | inaccuracies and increase the steady-state and transient stability of Grid-Tied Inverters                                                                             |
| 95               | TEMAPS674    | A PV-Battery System Resilient to Weak Grid<br>Conditions with Regulated Power Injection and<br>Grid Supportive Features<br>(Power Systems / Power Quality)              | The main objective of this project is<br>to improve the power quality in the<br>grid connected PV battery system<br>during weak grid conditions.                      |
| 96               | TEMAPS675    | A PV-Battery System Resilient to Weak Grid<br>Conditions with Regulated Power Injection and<br>Grid Supportive Features<br>(Power Systems / Power Quality)              | The main objective of this project is<br>to improve the power quality in the<br>grid connected PV battery system<br>during weak grid conditions.                      |
| 97               | TEMAPS676    | A PV-Battery System Resilient to Weak Grid<br>Conditions with Regulated Power Injection and<br>Grid Supportive Features<br>(Power Systems / Microgrids)                 | The main objective of this project is<br>to improve the power quality in the<br>grid connected PV battery system<br>during weak grid conditions.                      |
| 98               | TEPGPS675    | A PV-Battery System Resilient to Weak Grid<br>Conditions with Regulated Power Injection and<br>Grid Supportive Features<br>(Power Systems / Microgrids)                 | The main objective of this project is<br>to improve the power quality in the<br>grid connected PV battery system<br>during weak grid conditions.                      |
| 99               | TEMAPS673    | A Compact Single-Phase AC-DC<br>Wireless-Power-Transfer Converter with Active<br>Power Factor Correction<br>(Power Systems / Power Quality)                             | The main objective of this project is<br>to propose a compact single phase<br>ac-dc converter WPT with active<br>power factor correction.                             |
| 100              | TEPGPS636    | A Compact Single-Phase AC-DC<br>Wireless-Power-Transfer Converter with Active<br>Power Factor Correction<br>(Power Systems / Power Quality)                             | The main objective of this project is<br>to propose a compact single phase<br>ac-dc converter WPT with active<br>power factor correction.                             |
| 101              | TEMAPS672    | Power Compensation Control for DFIG-Based<br>Wind Turbines to Enhance Synchronization<br>Stability during Severe Grid Faults<br>(Power Systems / Wind Power Generation) | The main objective of this project is<br>to enhance the synchronization<br>stability and compensate the power<br>control in DFIG based WTs during<br>fault condition. |
| 102              | TEPGPS635    | Power Compensation Control for DFIG-Based<br>Wind Turbines to Enhance Synchronization<br>Stability during Severe Grid Faults<br>(Power Systems / Wind Power Generation) | The main objective of this project is<br>to enhance the synchronization<br>stability and compensate the power<br>control in DFIG based WTs during<br>fault condition. |
| 103              | TEMAPS670    | Adaptive Power Compensation-Based<br>Frequency Regulation Strategy of Wind Turbine<br>System<br>(Power Systems / Power Quality)                                         | The main objective of this project is<br>to regulate the frequency in wind<br>turbine system by using adaptive<br>power compensation strategy.                        |
| 104              | TEMAPS671    | Adaptive Power Compensation-Based<br>Frequency Regulation Strategy of Wind Turbine<br>System<br>(Power Systems / Wind Power Generation)                                 | The main objective of this project is<br>to regulate the frequency in wind<br>turbine system by using adaptive<br>power compensation strategy.                        |
| 105<br>( Page 12 | TEPGPS633    | Adaptive Power Compensation-Based                                                                                                                                       | The main objective of this project is<br>Email: info@takeoffprojects.com                                                                                              |



| S.No     | Project Code | Project Name                                                                                                                                                                           | Objective                                                                                                                                                                            |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |              | Frequency Regulation Strategy of Wind Turbine<br>System<br>(Power Systems / Power Quality)                                                                                             | to regulate the frequency in wind<br>turbine system by using adaptive<br>power compensation strategy.                                                                                |
| 106      | TEPGPS634    | Adaptive Power Compensation-Based<br>Frequency Regulation Strategy of Wind Turbine<br>System<br>(Power Systems / Wind Power Generation)                                                | The main objective of this project is<br>to regulate the frequency in wind<br>turbine system by using adaptive<br>power compensation strategy.                                       |
| 107      | TEMAPE249    | Mitigation of Circulating Current in Three<br>Phase Quasi-Z-Source Parallel Inverters with<br>PV and Battery Storage<br>(Power Electronics / DC - AC Converters)                       | The main objective of this project is<br>to mitigate the circulating currents<br>occurred in the three phase<br>quasi-Z-Source parallel inverters.                                   |
| 108      | TEPGPE221    | Mitigation of Circulating Current in Three<br>Phase Quasi-Z-Source Parallel Inverters with<br>PV and Battery Storage<br>(Power Electronics / DC - AC Converters)                       | The main objective of this project is<br>to mitigate the circulating currents<br>occurred in the three phase<br>quasi-Z-Source parallel inverters.                                   |
| 109      | TEMAPS669    | Mitigation of Circulating Current in Three<br>Phase Quasi-Z-Source Parallel Inverters with<br>PV and Battery Storage<br>(Power Systems / Solar Power Generation)                       | The main objective of this project is<br>to mitigate the circulating currents<br>occurred in the three phase<br>quasi-Z-Source parallel inverters.                                   |
| 110      | TEPGPS632    | Mitigation of Circulating Current in Three<br>Phase Quasi-Z-Source Parallel Inverters with<br>PV and Battery Storage<br>(Power Systems / Solar Power Generation)                       | The main objective of this project is<br>to mitigate the circulating currents<br>occurred in the three phase<br>quasi-Z-Source parallel inverters.                                   |
| 111      | TEMAPS668    | Analysis and Control of Switched<br>Quasi-Impedance-Source-Inverter with<br>Superior Boosting Ability for Renewable<br>Energy Applications<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to improve the input current ripple<br>with enhanced boosting ability and<br>appropriate control of the<br>impedance network active switch. |
| 112      | TEPGPS631    | Analysis and Control of Switched<br>Quasi-Impedance-Source-Inverter with<br>Superior Boosting Ability for Renewable<br>Energy Applications<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to improve the input current ripple<br>with enhanced boosting ability and<br>appropriate control of the<br>impedance network active switch. |
| 113      | TEMAPS667    | Model Predictive Control for Grid-Tied<br>Multi-Port System with Integrated PV and<br>Battery Storage<br>(Power Systems / Microgrids)                                                  | The main objective of this project is<br>to control the grid-tied multiport<br>system with integrated PV and<br>battery storage by using Model<br>Predictive Controller.             |
| 114      | TEPGPS630    | Model Predictive Control for Grid-Tied<br>Multi-Port System with Integrated PV and<br>Battery Storage<br>(Power Systems / Microgrids)                                                  | The main objective of this project is<br>to control the grid-tied multiport<br>system with integrated PV and<br>battery storage by using Model<br>Predictive Controller.             |
| 115      | TEMAPE248    | Model Predictive Control for Grid-Tied<br>Multi-Port System with Integrated PV and<br>Battery Storage                                                                                  | The main objective of this project is<br>to control the grid-tied multiport<br>system with integrated PV and                                                                         |
| (Page 13 | 3)           |                                                                                                                                                                                        | Email: info@takeoffprojects.com                                                                                                                                                      |

Website: www.takeoffprojects.com



| S.No             | Project Code | Project Name                                                                                                                                                                                      | Objective                                                                                                                                                                                                                            |
|------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | (Power Electronics / Multilevel Converters)                                                                                                                                                       | battery storage by using Model<br>Predictive Controller.                                                                                                                                                                             |
| 116              | TEPGPE220    | Model Predictive Control for Grid-Tied<br>Multi-Port System with Integrated PV and<br>Battery Storage<br>(Power Electronics / Multilevel Converters)                                              | The main objective of this project is<br>to control the grid-tied multiport<br>system with integrated PV and<br>battery storage by using Model<br>Predictive Controller.                                                             |
| 117              | TEMAPE247    | A Soft-Switched Power-Factor-Corrected<br>Single-Phase Bidirectional AC–DC Wireless<br>Power Transfer Converter with an Integrated<br>Power Stage<br>(Power Electronics / DC - AC Converters)     | The main objective of this project is<br>to reduce the semiconductor<br>devices count and increase the<br>power quality in the system by using<br>a soft-switched single-phase<br>single-stage bidirectional ac-dc<br>WPT converter. |
| 118              | TEPGPE219    | A Soft-Switched Power-Factor-Corrected<br>Single-Phase Bidirectional AC–DC Wireless<br>Power Transfer Converter with an Integrated<br>Power Stage<br>(Power Electronics / DC - AC Converters)     | The main objective of this project is<br>to reduce the semiconductor<br>devices count and increase the<br>power quality in the system by using<br>a soft-switched single-phase<br>single-stage bidirectional ac-dc<br>WPT converter. |
| 119              | TEMAPE243    | Coordinated Control for Performance<br>Enhancement of an Islanded AC-DC Microgrid<br>with Uninterrupted Power and Seamless<br>Transition Capabilities<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to enhance the performance of an<br>islanded AC-DC Microgrid with<br>uninterrupted power and seamless<br>transition capabilities.                                                           |
| 120              | TEPGPE215    | Coordinated Control for Performance<br>Enhancement of an Islanded AC-DC Microgrid<br>with Uninterrupted Power and Seamless<br>Transition Capabilities<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to enhance the performance of an<br>islanded AC-DC Microgrid with<br>uninterrupted power and seamless<br>transition capabilities.                                                           |
| 121              | TEMAPS665    | Coordinated Control for Performance<br>Enhancement of an Islanded AC-DC Microgrid<br>with Uninterrupted Power and Seamless<br>Transition Capabilities<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to enhance the performance of an<br>islanded AC-DC Microgrid with<br>uninterrupted power and seamless<br>transition capabilities.                                                           |
| 122              | TEPGPS628    | Coordinated Control for Performance<br>Enhancement of an Islanded AC-DC Microgrid<br>with Uninterrupted Power and Seamless<br>Transition Capabilities<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to enhance the performance of an<br>islanded AC-DC Microgrid with<br>uninterrupted power and seamless<br>transition capabilities.                                                           |
| 123              | TEMAPE245    | Novel Cascaded Seven-Level Inverter with<br>Embedded Voltage Boosting for Renewable<br>Energy Applications<br>(Power Electronics / Multilevel Converters)                                         | The main objective of this project is<br>to propose a novel seven-level<br>inverter with voltage boosting<br>capability for renewable energy<br>applications.                                                                        |
| 124<br>( Page 14 | TEMAPE246    | Novel Cascaded Seven-Level Inverter with                                                                                                                                                          | The main objective of this project is<br>Email: info@takeoffprojects.com                                                                                                                                                             |

| S.No | Project Code | Project Name                                                                                                                                              | Objective                                                                                                                                                     |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | Embedded Voltage Boosting for Renewable<br>Energy Applications<br>(Power Electronics / DC - AC Converters)                                                | to propose a novel seven-level<br>inverter with voltage boosting<br>capability for renewable energy<br>applications.                                          |
| 125  | TEPGPE217    | Novel Cascaded Seven-Level Inverter with<br>Embedded Voltage Boosting for Renewable<br>Energy Applications<br>(Power Electronics / Multilevel Converters) | The main objective of this project is<br>to propose a novel seven-level<br>inverter with voltage boosting<br>capability for renewable energy<br>applications. |
| 126  | TEPGPE218    | Novel Cascaded Seven-Level Inverter with<br>Embedded Voltage Boosting for Renewable<br>Energy Applications<br>(Power Electronics / DC - AC Converters)    | The main objective of this project is<br>to propose a novel seven-level<br>inverter with voltage boosting<br>capability for renewable energy<br>applications. |
| 127  | TEMAPE244    | A Two-stage Single-phase Grid-connected<br>Solar-PV System with Simplified Power<br>Regulation<br>(Power Electronics / DC - AC Converters)                | The main objective of this project is<br>to regulate the power in a two stage<br>single phase grid connected solar<br>PV system with MPP estimation.          |
| 128  | TEPGPE216    | A Two-stage Single-phase Grid-connected<br>Solar-PV System with Simplified Power<br>Regulation<br>(Power Electronics / DC - AC Converters)                | The main objective of this project is<br>to regulate the power in a two stage<br>single phase grid connected solar<br>PV system with MPP estimation.          |
| 129  | TEMAPS666    | A Two-stage Single-phase Grid-connected<br>Solar-PV System with Simplified Power<br>Regulation<br>(Power Systems / Solar Power Generation)                | The main objective of this project is<br>to regulate the power in a two stage<br>single phase grid connected solar<br>PV system with MPP estimation.          |
| 130  | TEPGPS629    | A Two-stage Single-phase Grid-connected<br>Solar-PV System with Simplified Power<br>Regulation<br>(Power Systems / Solar Power Generation)                | The main objective of this project is<br>to regulate the power in a two stage<br>single phase grid connected solar<br>PV system with MPP estimation.          |
| 131  | TEMAPE242    | Voltage-Fed Isolated Matrix-Type AC-DC<br>Converter for Wind Energy Conversion System<br>(Power Electronics / DC - AC Converters)                         | The main objective of this project is to propose a voltage fed isolated matrix-type AC/DC converter for WECS.                                                 |
| 132  | TEPGPE214    | Voltage-Fed Isolated Matrix-Type AC-DC<br>Converter for Wind Energy Conversion System<br>(Power Electronics / DC - AC Converters)                         | The main objective of this project is to propose a voltage fed isolated matrix-type AC/DC converter for WECS.                                                 |
| 133  | TEMAPS664    | Voltage-Fed Isolated Matrix-Type AC-DC<br>Converter for Wind Energy Conversion System<br>(Power Systems / Wind Power Generation)                          | The main objective of this project is to propose a voltage fed isolated matrix-type AC/DC converter for WECS.                                                 |
| 134  | TEPGPS627    | Voltage-Fed Isolated Matrix-Type AC-DC<br>Converter for Wind Energy Conversion System<br>(Power Systems / Wind Power Generation)                          | The main objective of this project is to propose a voltage fed isolated matrix-type AC/DC converter for WECS.                                                 |



| S.No             | Project Code | Project Name                                                                                                                                                                           | Objective                                                                                                                                                                                                           |
|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 135              | TEMAPE241    | Simple and Seamless PWM Scheme of<br>Isolated Bidirectional AC–DC Converter for<br>Reducing Voltage Spike<br>(Power Electronics / DC - AC Converters)                                  | The main objective of this project is<br>to reduce the voltage spikes by<br>using simple and seamless PWM<br>scheme of isolated Bidirectional<br>AC-DC Converter.                                                   |
| 136              | TEPGPE213    | Simple and Seamless PWM Scheme of<br>Isolated Bidirectional AC–DC Converter for<br>Reducing Voltage Spike<br>(Power Electronics / DC - AC Converters)                                  | The main objective of this project is<br>to reduce the voltage spikes by<br>using simple and seamless PWM<br>scheme of isolated Bidirectional<br>AC-DC Converter.                                                   |
| 137              | TEMAPE240    | Constant-Current and Constant-Voltage Output<br>Using Hybrid Compensated Single-Stage<br>Resonant Converter for<br>Wireless-Power-Transfer<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to obtain constant voltage and<br>constant current at the output side<br>by using Hybrid compensated<br>single-stage resonant converter for<br>WPT.                        |
| 138              | TEPGPE212    | Constant-Current and Constant-Voltage Output<br>Using Hybrid Compensated Single-Stage<br>Resonant Converter for<br>Wireless-Power-Transfer<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to obtain constant voltage and<br>constant current at the output side<br>by using Hybrid compensated<br>single-stage resonant converter for<br>WPT.                        |
| 139              | TEMAPE239    | A Single-Stage Wireless Power Transfer<br>Converter with Hybrid Compensation Topology<br>in AC Input<br>(Power Electronics / DC - AC Converters)                                       | The main objective of this project is<br>to obtain constant voltage and<br>current in a single stage WPT<br>converter with Hybrid compensation<br>topology.                                                         |
| 140              | TEPGPE211    | A Single-Stage Wireless Power Transfer<br>Converter with Hybrid Compensation Topology<br>in AC Input<br>(Power Electronics / DC - AC Converters)                                       | The main objective of this project is<br>to obtain constant voltage and<br>current in a single stage WPT<br>converter with Hybrid compensation<br>topology.                                                         |
| 141              | TEMAED173    | Electric-Drive-Reconstructed Onboard Charger<br>for Solar-Powered Electric Vehicles<br>Incorporating Six-Phase Machine<br>(Electrical Drives / Electrical Vehicles)                    | The main objective of this project is<br>to propose a novel<br>electric-drive-reconstructed onboard<br>charger (EDROC) for the<br>solar-powered electric vehicle that<br>incorporates a six-phase machine<br>drive. |
| 142              | TEPGED167    | Electric-Drive-Reconstructed Onboard Charger<br>for Solar-Powered Electric Vehicles<br>Incorporating Six-Phase Machine<br>(Electrical Drives / Electrical Vehicles)                    | The main objective of this project is<br>to propose a novel<br>electric-drive-reconstructed onboard<br>charger (EDROC) for the<br>solar-powered electric vehicle that<br>incorporates a six-phase machine<br>drive. |
| 143<br>( Page 16 | TEMAED172    | Effect of Fault Ride through Capability on<br>Electric Vehicle Charging Station under Critical                                                                                         | The main objective of this project is<br>to examine the impacts of voltage<br>Email: info@takeoffprojects.com                                                                                                       |

| S.No      | Project Code | Project Name                                                                                                                                                      | Objective                                                                                                                                                                                                                    |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|           |              | Voltage Conditions<br>(Electrical Drives / Electrical Vehicles)                                                                                                   | disturbance on EV batteries and<br>charging systems, and provides a<br>fault ride-through capability (FRTC)<br>to enhance the voltage quality.                                                                               |
| 144       | TEPGED166    | Effect of Fault Ride through Capability on<br>Electric Vehicle Charging Station under Critical<br>Voltage Conditions<br>(Electrical Drives / Electrical Vehicles) | The main objective of this project is<br>to examine the impacts of voltage<br>disturbance on EV batteries and<br>charging systems, and provides a<br>fault ride-through capability (FRTC)<br>to enhance the voltage quality. |
| 145       | TEMAPS663    | Effect of Fault Ride through Capability on<br>Electric Vehicle Charging Station under Critical<br>Voltage Conditions<br>(Power Systems / Power Quality)           | The main objective of this project is<br>to examine the impacts of voltage<br>disturbance on EV batteries and<br>charging systems, and provides a<br>fault ride-through capability (FRTC)<br>to enhance the voltage quality. |
| 146       | TEPGPS626    | Effect of Fault Ride through Capability on<br>Electric Vehicle Charging Station under Critical<br>Voltage Conditions<br>(Power Systems / Power Quality)           | The main objective of this project is<br>to examine the impacts of voltage<br>disturbance on EV batteries and<br>charging systems, and provides a<br>fault ride-through capability (FRTC)<br>to enhance the voltage quality. |
| 147       | TEMAED171    | A Bridgeless Isolated Half-Bridge Converter<br>Based EV Charger with Power Factor<br>Preregulation<br>(Electrical Drives / Electrical Vehicles)                   | The main objective of this project is<br>to reduce the oscillations and<br>improve the power quality and<br>efficiency of the EV Charger.                                                                                    |
| 148       | TEPGED165    | A Bridgeless Isolated Half-Bridge Converter<br>Based EV Charger with Power Factor<br>Preregulation<br>(Electrical Drives / Electrical Vehicles)                   | The main objective of this project is<br>to reduce the oscillations and<br>improve the power quality and<br>efficiency of the EV Charger.                                                                                    |
| 149       | TEMAPS662    | A Bridgeless Isolated Half-Bridge Converter<br>Based EV Charger with Power Factor<br>Preregulation<br>(Power Systems / Power Quality)                             | The main objective of this project is<br>to reduce the oscillations and<br>improve the power quality and<br>efficiency of the EV Charger.                                                                                    |
| 150       | TEPGPS625    | A Bridgeless Isolated Half-Bridge Converter<br>Based EV Charger with Power Factor<br>Preregulation<br>(Power Systems / Power Quality)                             | The main objective of this project is<br>to reduce the oscillations and<br>improve the power quality and<br>efficiency of the EV Charger.                                                                                    |
| 151       | TEMAED170    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Electrical Drives / AC Drives)                                                        | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions.                                 |
| 152       | TEPGED164    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Electrical Drives / AC Drives)                                                        | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected                                                                                                                        |
| ( Page 17 | )            |                                                                                                                                                                   | Email: info@takeoffprojects.com                                                                                                                                                                                              |

| S.No     | Project Code | Project Name                                                                                                        | Objective                                                                                                                                                                                    |
|----------|--------------|---------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |              |                                                                                                                     | PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions.                                                                                                          |
| 153      | TEMAPS658    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Hybrid Systems)         | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 154      | TEMAPS659    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Power Quality)          | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 155      | TEMAPS660    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Wind Power Generation)  | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 156      | TEMAPS661    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Solar Power Generation) | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 157      | TEPGPS621    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Hybrid Systems)         | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 158      | TEPGPS622    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Power Quality)          | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 159      | TEPGPS623    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Wind Power Generation)  | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected<br>PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions. |
| 160      | TEPGPS624    | Operation of Grid Connected PV-Battery-Wind<br>Driven DFIG Based System<br>(Power Systems / Solar Power Generation) | The main objective of this project to<br>improve the operation and power<br>quality of Grid Connected                                                                                        |
| (Page 18 | 3)           |                                                                                                                     | Email: info@takeoffprojects.com                                                                                                                                                              |



| S.No     | Project Code | Project Name                                                                                                                                                   | Objective                                                                                                                                                                                                     |
|----------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |              |                                                                                                                                                                | PV-Battery-Wind Driven DFIG<br>Based System under different<br>abnormal conditions.                                                                                                                           |
| 161      | TEMAED169    | High Efficiency Operation of Brushless DC<br>Motor Drive Using Optimized Harmonic<br>Minimization Based Switching Technique<br>(Electrical Drives / AC Drives) | The main objective of this project is<br>to eliminate dominant current<br>harmonics, which enables to<br>achieve better BLDCM drive<br>efficiency with minimized losses.                                      |
| 162      | TEPGED163    | High Efficiency Operation of Brushless DC<br>Motor Drive Using Optimized Harmonic<br>Minimization Based Switching Technique<br>(Electrical Drives / AC Drives) | The main objective of this project is<br>to eliminate dominant current<br>harmonics, which enables to<br>achieve better BLDCM drive<br>efficiency with minimized losses.                                      |
| 163      | TEMAED168    | Grid Current Quality Improvement for<br>Three-Phase Diode Rectifier-Fed Small<br>DC-Link Capacitance IPMSM Drives<br>(Electrical Drives / AC Drives)           | The main objective of this project is,<br>controls the grid current by<br>regulating the rectifier current sixth<br>harmonic for Three-Phase Diode<br>Rectifier-Fed Small DC-Link<br>Capacitance IPMSM Drives |
| 164      | TEPGED162    | Grid Current Quality Improvement for<br>Three-Phase Diode Rectifier-Fed Small<br>DC-Link Capacitance IPMSM Drives<br>(Electrical Drives / AC Drives)           | The main objective of this project is,<br>controls the grid current by<br>regulating the rectifier current sixth<br>harmonic for Three-Phase Diode<br>Rectifier-Fed Small DC-Link<br>Capacitance IPMSM Drives |
| 165      | TEMAPS657    | Grid Current Quality Improvement for<br>Three-Phase Diode Rectifier-Fed Small<br>DC-Link Capacitance IPMSM Drives<br>(Power Systems / Power Quality)           | The main objective of this project is,<br>controls the grid current by<br>regulating the rectifier current sixth<br>harmonic for Three-Phase Diode<br>Rectifier-Fed Small DC-Link<br>Capacitance IPMSM Drives |
| 166      | TEPGPS620    | Grid Current Quality Improvement for<br>Three-Phase Diode Rectifier-Fed Small<br>DC-Link Capacitance IPMSM Drives<br>(Power Systems / Power Quality)           | The main objective of this project is,<br>controls the grid current by<br>regulating the rectifier current sixth<br>harmonic for Three-Phase Diode<br>Rectifier-Fed Small DC-Link<br>Capacitance IPMSM Drives |
| 167      | TEMAED167    | An Integrated Power Converter-Based<br>Brushless DC Motor Drive System<br>(Electrical Drives / DC Drives)                                                      | The main objective of this project is<br>to propose an integrated power<br>converter and controlling topology of<br>a Brushless DC Motor Drive system.                                                        |
| 168      | TEPGED161    | An Integrated Power Converter-Based<br>Brushless DC Motor Drive System<br>(Electrical Drives / DC Drives)                                                      | The main objective of this project is<br>to propose an integrated power<br>converter and controlling topology of<br>a Brushless DC Motor Drive system.                                                        |
| 169      | TEMAPE238    | An Integrated Power Converter-Based<br>Brushless DC Motor Drive System                                                                                         | The main objective of this project is to propose an integrated power                                                                                                                                          |
| (Page 19 | 9)           |                                                                                                                                                                | Email: info@takeoffprojects.com                                                                                                                                                                               |



| S.No | Project Code | Project Name                                                                                                                                       | Objective                                                                                                                                                                                                                    |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | (Power Electronics / DC - DC Converters)                                                                                                           | converter and controlling topology of a Brushless DC Motor Drive system.                                                                                                                                                     |
| 170  | TEPGPE210    | An Integrated Power Converter-Based<br>Brushless DC Motor Drive System<br>(Power Electronics / DC - DC Converters)                                 | The main objective of this project is<br>to propose an integrated power<br>converter and controlling topology of<br>a Brushless DC Motor Drive system.                                                                       |
| 171  | TEMAED166    | Gradient Detection Starting Controlled<br>Photovoltaic Sourced BLDCM Drive without<br>Position Sensors<br>(Electrical Drives / AC Drives)          | The main objective of this project is<br>speed independent motion<br>sensorless control of a solar<br>photovoltaic fed brushless PM<br>motor.                                                                                |
| 172  | TEPGED160    | Gradient Detection Starting Controlled<br>Photovoltaic Sourced BLDCM Drive without<br>Position Sensors<br>(Electrical Drives / AC Drives)          | The main objective of this project is<br>speed independent motion<br>sensorless control of a solar<br>photovoltaic fed brushless PM<br>motor.                                                                                |
| 173  | TEMAPS656    | Gradient Detection Starting Controlled<br>Photovoltaic Sourced BLDCM Drive without<br>Position Sensors<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>speed independent motion<br>sensorless control of a solar<br>photovoltaic fed brushless PM<br>motor.                                                                                |
| 174  | TEPGPS619    | Gradient Detection Starting Controlled<br>Photovoltaic Sourced BLDCM Drive without<br>Position Sensors<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>speed independent motion<br>sensorless control of a solar<br>photovoltaic fed brushless PM<br>motor.                                                                                |
| 175  | TEMAED165    | An Adaptive Active Disturbance Rejection<br>Control Strategy for Speed-Sensorless<br>Induction Motor Drives<br>(Electrical Drives / AC Drives)     | The main objective of this project is<br>Sensorless speed control of<br>induction motor drive by using An<br>Adaptive Active Disturbance<br>Rejection Control Strategy.                                                      |
| 176  | TEPGED159    | An Adaptive Active Disturbance Rejection<br>Control Strategy for Speed-Sensorless<br>Induction Motor Drives<br>(Electrical Drives / AC Drives)     | The main objective of this project is<br>Sensorless speed control of<br>induction motor drive by using An<br>Adaptive Active Disturbance<br>Rejection Control Strategy.                                                      |
| 177  | TEMAPE237    | An 18-Pulse Converter and 4-Level Cascaded<br>Inverter Based Induction Motor Drive<br>(Power Electronics / Multilevel Converters)                  | The main objective of this project is<br>to reduce the converter losses and<br>improve power quality performance<br>by using an 18-pulse ac–dc and<br>4-level cascaded converters for a<br>medium-voltage drive application. |
| 178  | TEPGPE209    | An 18-Pulse Converter and 4-Level Cascaded<br>Inverter Based Induction Motor Drive<br>(Power Electronics / Multilevel Converters)                  | The main objective of this project is<br>to reduce the converter losses and<br>improve power quality performance<br>by using an 18-pulse ac–dc and<br>4-level cascaded converters for a                                      |

| S.No | Project Code | Project Name                                                                                                                          | Objective                                                                                                                                                                                                                    |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              |                                                                                                                                       | medium-voltage drive application.                                                                                                                                                                                            |
| 179  | TEMAED164    | An 18-Pulse Converter and 4-Level Cascaded<br>Inverter Based Induction Motor Drive<br>(Electrical Drives / AC Drives)                 | The main objective of this project is<br>to reduce the converter losses and<br>improve power quality performance<br>by using an 18-pulse ac–dc and<br>4-level cascaded converters for a<br>medium-voltage drive application. |
| 180  | TEPGED158    | An 18-Pulse Converter and 4-Level Cascaded<br>Inverter Based Induction Motor Drive<br>(Electrical Drives / AC Drives)                 | The main objective of this project is<br>to reduce the converter losses and<br>improve power quality performance<br>by using an 18-pulse ac–dc and<br>4-level cascaded converters for a<br>medium-voltage drive application. |
| 181  | TEMAED163    | A Speed Range Extension Scheme for<br>Scalar-Controlled Open-End Winding Induction<br>Motor Drives<br>(Electrical Drives / AC Drives) | The main objective of this project is<br>Speed control of open end winding<br>induction motor drive by employing<br>speed range extension scheme.                                                                            |
| 182  | TEPGED157    | A Speed Range Extension Scheme for<br>Scalar-Controlled Open-End Winding Induction<br>Motor Drives<br>(Electrical Drives / AC Drives) | The main objective of this project is<br>Speed control of open end winding<br>induction motor drive by employing<br>speed range extension scheme.                                                                            |
| 183  | TEMACS93     | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Control Systems)                                       | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL.                                                                            |
| 184  | TEPGCS87     | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Control Systems)                                       | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL.                                                                            |
| 185  | TEMAED162    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Electrical Drives / AC Drives)                         | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL.                                                                            |
| 186  | TEPGED156    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Electrical Drives / AC Drives)                         | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL.                                                                            |
| 187  | TEMAPS652    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Hybrid Systems)                        | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL.                                                                            |

| S.No | Project Code | Project Name                                                                                                                       | Objective                                                                                                                                         |
|------|--------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
| 188  | TEMAPS653    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Power Quality)                      | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 189  | TEMAPS654    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Wind Power Generation)              | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 190  | TEMAPS655    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Solar Power Generation)             | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 191  | TEPGPS615    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Hybrid Systems)                     | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 192  | TEPGPS616    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Power Quality)                      | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 193  | TEPGPS617    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Wind Power Generation)              | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 194  | TEPGPS618    | Wind-Driven DFIG–Battery–PV-Based System<br>with Advance DSOSF-FLL Control<br>(Power Systems / Solar Power Generation)             | The main objective is to improve the<br>power quality of the system for<br>Wind-Driven<br>DFIG–Battery–PV-Based System<br>with advance DSOSF-FLL. |
| 195  | TEMACS85     | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Control Systems)            | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.   |
| 196  | TEPGCS79     | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Control Systems)            | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.   |
| 197  | TEMAPS639    | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Power Systems / Microgrids) | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.   |

| S.No     | Project Code | Project Name                                                                                                                                      | Objective                                                                                                                                                                                        |
|----------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 198      | TEMAPS640    | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Power Systems / Hybrid Systems)            | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.                                                  |
| 199      | TEMAPS641    | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Power Systems / Solar Power Generation)    | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.                                                  |
| 200      | TEPGPS602    | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Power Systems / Microgrids)                | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.                                                  |
| 201      | TEPGPS603    | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Power Systems / Hybrid Systems)            | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.                                                  |
| 202      | TEPGPS604    | Hybrid-Modulation Hysteresis Scheme Based<br>Decoupled Power Control of Grid-Connected<br>Inverter<br>(Power Systems / Solar Power Generation)    | The main objective of this paper is<br>to improve the system efficiency by<br>using a new hybrid modulation<br>based hysteresis current scheme.                                                  |
| 203      | TEMACS84     | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Control Systems)                       | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 204      | TEPGCS78     | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Control Systems)                       | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 205      | TEMAPS636    | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Power Systems / Hybrid Systems)        | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 206      | TEMAPS637    | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Power Systems / Wind Power Generation) | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 207      | TEMAPS638    | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator                                            | The main objective of the proposed system is to prevent from the overshoots during the sudden                                                                                                    |
| (Page 23 | 3)           |                                                                                                                                                   | Email: info@takeoffprojects.com                                                                                                                                                                  |

| S.No             | Project Code | Project Name                                                                                                                                       | Objective                                                                                                                                                                                        |
|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | (Power Systems / Solar Power Generation)                                                                                                           | transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator                                                                                                        |
| 208              | TEPGPS599    | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Power Systems / Hybrid Systems)         | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 209              | TEPGPS600    | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Power Systems / Wind Power Generation)  | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 210              | TEPGPS601    | Coordinated Control Strategy for Hybrid<br>OFF-Grid System Based on Variable Speed<br>Diesel Generator<br>(Power Systems / Solar Power Generation) | The main objective of the proposed<br>system is to prevent from the<br>overshoots during the sudden<br>transition by using Hybrid OFF-Grid<br>System Based on Variable Speed<br>Diesel Generator |
| 211              | TEMACS83     | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Control Systems)                               | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads        |
| 212              | TEPGCS77     | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Control Systems)                               | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads        |
| 213              | TEMAPS633    | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Power Systems / Microgrids)                    | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads        |
| 214              | TEMAPS634    | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Power Systems / Power Quality)                 | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads        |
| 215<br>( Page 24 | TEMAPS635    | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads                                                    | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Email: info@takeoffprojects.com                                                   |
| (Page 24         | 4)           |                                                                                                                                                    | Email: info@takeoffprojects.cc                                                                                                                                                                   |

## **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                | Objective                                                                                                                                                                                                                    |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | (Power Systems / Solar Power Generation)                                                                                                    | Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads                                                                                                                                                   |
| 216  | TEPGPS596    | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Power Systems / Microgrids)             | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads                                    |
| 217  | TEPGPS597    | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Power Systems / Power Quality)          | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads                                    |
| 218  | TEPGPS598    | Control of ILC in an Autonomous AC–DC<br>Hybrid Microgrid with Unbalanced Nonlinear<br>AC Loads<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>provide control to a bidirectional<br>interlinking converter in an<br>Autonomous AC–DC Hybrid<br>Microgrid with Unbalanced<br>Nonlinear AC Loads                                    |
| 219  | TEMACS82     | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Control Systems)                       | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 220  | TEPGCS76     | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Control Systems)                       | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 221  | TEMAED161    | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Electrical Drives / AC Drives)         | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 222  | TEPGED155    | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Electrical Drives / AC Drives)         | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |

## takeoffedu <sub>G R O U P</sub>

| S.No | Project Code | Project Name                                                                                                                                                         | Objective                                                                                                                                                                                                                    |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 223  | TEMAPE232    | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Power Electronics / DC - DC Converters)                         | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 224  | TEPGPE204    | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Power Electronics / DC - DC Converters)                         | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 225  | TEMAPS632    | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Power Systems / Solar Power Generation)                         | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 226  | TEPGPS595    | Battery Supported Solar Water Pumping<br>System with Adaptive Feed-Forward Current<br>Estimation<br>(Power Systems / Solar Power Generation)                         | The main objective of this project is<br>to achieve maximum water<br>discharge irrespective of climatic<br>conditions to Battery Supported<br>Solar Water Pumping System with<br>Adaptive Feed-Forward Current<br>Estimation |
| 227  | TEMACS81     | An MRAS Observer-Based Speed Sensorless<br>Control Method for Dual-Cage Rotor Brushless<br>Doubly Fed Induction Generator<br>(Control Systems)                       | The main objective of this paper is<br>to control of Dual-Cage Rotor<br>Brushless Doubly Fed Induction<br>Generator with MRAS observer<br>method                                                                             |
| 228  | TEPGCS75     | An MRAS Observer-Based Speed Sensorless<br>Control Method for Dual-Cage Rotor Brushless<br>Doubly Fed Induction Generator<br>(Control Systems)                       | The main objective of this paper is<br>to control of Dual-Cage Rotor<br>Brushless Doubly Fed Induction<br>Generator with MRAS observer<br>method                                                                             |
| 229  | TEMAPS631    | An MRAS Observer-Based Speed Sensorless<br>Control Method for Dual-Cage Rotor Brushless<br>Doubly Fed Induction Generator<br>(Power Systems / Wind Power Generation) | The main objective of this paper is<br>to control of Dual-Cage Rotor<br>Brushless Doubly Fed Induction<br>Generator with MRAS observer<br>method                                                                             |
| 230  | TEPGPS594    | An MRAS Observer-Based Speed Sensorless<br>Control Method for Dual-Cage Rotor Brushless<br>Doubly Fed Induction Generator<br>(Power Systems / Wind Power Generation) | The main objective of this paper is<br>to control of Dual-Cage Rotor<br>Brushless Doubly Fed Induction<br>Generator with MRAS observer<br>method                                                                             |

| S.No      | Project Code | Project Name                                                                                                                                                            | Objective                                                                                                                                                    |
|-----------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 231       | TEMACS80     | An Integrated Topology of Three-Port DC-DC<br>Converter for PV-Battery Power Systems<br>(Control Systems)                                                               | The main objective of the proposed system is to maintain load voltage during different disturbances are exhibited.                                           |
| 232       | TEPGCS74     | An Integrated Topology of Three-Port DC-DC<br>Converter for PV-Battery Power Systems<br>(Control Systems)                                                               | The main objective of the proposed system is to maintain load voltage during different disturbances are exhibited.                                           |
| 233       | TEMAPE231    | An Integrated Topology of Three-Port DC-DC<br>Converter for PV-Battery Power Systems<br>(Power Electronics / DC - DC Converters)                                        | The main objective of the proposed system is to maintain load voltage during different disturbances are exhibited.                                           |
| 234       | TEPGPE203    | An Integrated Topology of Three-Port DC-DC<br>Converter for PV-Battery Power Systems<br>(Power Electronics / DC - DC Converters)                                        | The main objective of the proposed system is to maintain load voltage during different disturbances are exhibited.                                           |
| 235       | TEMAPS630    | An Integrated Topology of Three-Port DC-DC<br>Converter for PV-Battery Power Systems<br>(Power Systems / Solar Power Generation)                                        | The main objective of the proposed system is to maintain load voltage during different disturbances are exhibited.                                           |
| 236       | TEPGPS593    | An Integrated Topology of Three-Port DC-DC<br>Converter for PV-Battery Power Systems<br>(Power Systems / Solar Power Generation)                                        | The main objective of the proposed system is to maintain load voltage during different disturbances are exhibited.                                           |
| 237       | TEMACS79     | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Control Systems)               | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system. |
| 238       | TEPGCS73     | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Control Systems)               | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system. |
| 239       | TEMAPS627    | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Power Systems / Microgrids)    | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system. |
| 240       | TEMAPS628    | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Power Systems / Power Quality) | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system. |
| 241       | TEMAPS629    | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a                                                                                 | The main objective of the proposed method is to produce required                                                                                             |
| ( Page 27 | )            |                                                                                                                                                                         | Email: info@takeoffprojects.com                                                                                                                              |

## **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                                     | Objective                                                                                                                                                                                     |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | PV–BSS-Fed UAPF for Microgrid Realization<br>(Power Systems / Solar Power Generation)                                                                                            | switching pulses and improves the static and dynamic performance of the system.                                                                                                               |
| 242  | TEPGPS590    | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Power Systems / Microgrids)             | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system.                                  |
| 243  | TEPGPS591    | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Power Systems / Power Quality)          | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system.                                  |
| 244  | TEPGPS592    | An Enhancement of Power Quality with<br>Efficient Active Power Transfer Capability in a<br>PV–BSS-Fed UAPF for Microgrid Realization<br>(Power Systems / Solar Power Generation) | The main objective of the proposed<br>method is to produce required<br>switching pulses and improves the<br>static and dynamic performance of<br>the system.                                  |
| 245  | TEMAPS625    | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Power Systems / Power Quality)                                             | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive. |
| 246  | TEMAPS626    | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Power Systems / Solar Power Generation)                                    | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive. |
| 247  | TEMACS78     | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Control Systems)                                                           | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive. |
| 248  | TEMAED160    | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Electrical Drives / AC Drives)                                             | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive. |
| 249  | TEPGPS588    | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Power Systems / Power Quality)                                             | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive. |

| S.No                                                                | Project Code | Project Name                                                                                                                                  | Objective                                                                                                                                                                                                                                                                                      |
|---------------------------------------------------------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 250                                                                 | TEPGPS589    | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Power Systems / Solar Power Generation) | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive.                                                                                                  |
| 251                                                                 | TEPGED154    | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Electrical Drives / AC Drives)          | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive.                                                                                                  |
| 252                                                                 | TEPGCS72     | An Efficient and Credible Grid-Interfaced Solar<br>PV Water Pumping System with Energy<br>Storage<br>(Control Systems)                        | The main objective is, power<br>management scheme for a<br>grid-supported photovoltaic/battery<br>configuration for a water pumping<br>system employing a switched<br>reluctance motor drive.                                                                                                  |
| 253                                                                 | TEMACS77     | Adaptive Power Control Strategy for Smart<br>Droop-Based Grid-Connected Inverters<br>(Control Systems)                                        | The main objective of this project is<br>decouple the power flow by<br>compensating the associated<br>unintended active and reactive<br>power losses flowing through the<br>transmission line by using Adaptive<br>Power Control Strategy for Smart<br>Droop-Based Grid-Connected<br>Inverters |
| 254                                                                 | TEPGCS71     | Adaptive Power Control Strategy for Smart<br>Droop-Based Grid-Connected Inverters<br>(Control Systems)                                        | The main objective of this project is<br>decouple the power flow by<br>compensating the associated<br>unintended active and reactive<br>power losses flowing through the<br>transmission line by using Adaptive<br>Power Control Strategy for Smart<br>Droop-Based Grid-Connected<br>Inverters |
| 255                                                                 | TEMAPS624    | Adaptive Power Control Strategy for Smart<br>Droop-Based Grid-Connected Inverters<br>(Power Systems / Solar Power Generation)                 | The main objective of this project is<br>decouple the power flow by<br>compensating the associated<br>unintended active and reactive<br>power losses flowing through the<br>transmission line by using Adaptive<br>Power Control Strategy for Smart<br>Droop-Based Grid-Connected<br>Inverters |
| 256<br>( Page 29                                                    | TEPGPS587    | Adaptive Power Control Strategy for Smart<br>Droop-Based Grid-Connected Inverters<br>(Power Systems / Solar Power Generation)                 | The main objective of this project is<br>decouple the power flow by<br>compensating the associated<br>unintended active and reactive<br>power losses flowing through the<br>Email: info@takeoffprojects.com                                                                                    |
| Website: www.takeoffprojects.com Phone: +91 9030333433, +91 8776681 |              |                                                                                                                                               | ne: +91 9030333433, +91 8776681444                                                                                                                                                                                                                                                             |

#### **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                                                | Objective                                                                                                                                                                                                |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              |                                                                                                                                                                                             | transmission line by using Adaptive<br>Power Control Strategy for Smart<br>Droop-Based Grid-Connected<br>Inverters                                                                                       |
| 257  | TEMACS76     | A Wireless Power Transfer Based Three-Phase<br>PMSM Drive System with Matrix Converter<br>(Control Systems)                                                                                 | The main objective of this paper is<br>to improve the stability and power<br>density of the system by using A<br>Wireless Power Transfer Based<br>Three-Phase PMSM Drive System<br>with Matrix Converter |
| 258  | TEPGCS70     | A Wireless Power Transfer Based Three-Phase<br>PMSM Drive System with Matrix Converter<br>(Control Systems)                                                                                 | The main objective of this paper is<br>to improve the stability and power<br>density of the system by using A<br>Wireless Power Transfer Based<br>Three-Phase PMSM Drive System<br>with Matrix Converter |
| 259  | TEMAED159    | A Wireless Power Transfer Based Three-Phase<br>PMSM Drive System with Matrix Converter<br>(Electrical Drives / AC Drives)                                                                   | The main objective of this paper is<br>to improve the stability and power<br>density of the system by using A<br>Wireless Power Transfer Based<br>Three-Phase PMSM Drive System<br>with Matrix Converter |
| 260  | TEPGED153    | A Wireless Power Transfer Based Three-Phase<br>PMSM Drive System with Matrix Converter<br>(Electrical Drives / AC Drives)                                                                   | The main objective of this paper is<br>to improve the stability and power<br>density of the system by using A<br>Wireless Power Transfer Based<br>Three-Phase PMSM Drive System<br>with Matrix Converter |
| 261  | TEMACS75     | A Variable Step Size Robust Least Mean<br>Logarithmic Square-Based Control Scheme for<br>Improved Power Quality of Grid-Interfaced PV<br>System<br>(Control Systems)                        | The main objective of the proposed<br>method is to improve the Power<br>quality (PQ) during load unbalancing<br>as well as variable irradiation<br>condition.                                            |
| 262  | TEPGCS69     | A Variable Step Size Robust Least Mean<br>Logarithmic Square-Based Control Scheme for<br>Improved Power Quality of Grid-Interfaced PV<br>System<br>(Control Systems)                        | The main objective of the proposed<br>method is to improve the Power<br>quality (PQ) during load unbalancing<br>as well as variable irradiation<br>condition.                                            |
| 263  | TEMAPS622    | A Variable Step Size Robust Least Mean<br>Logarithmic Square-Based Control Scheme for<br>Improved Power Quality of Grid-Interfaced PV<br>System<br>(Power Systems / Power Quality)          | The main objective of the proposed<br>method is to improve the Power<br>quality (PQ) during load unbalancing<br>as well as variable irradiation<br>condition.                                            |
| 264  | TEMAPS623    | A Variable Step Size Robust Least Mean<br>Logarithmic Square-Based Control Scheme for<br>Improved Power Quality of Grid-Interfaced PV<br>System<br>(Power Systems / Solar Power Generation) | The main objective of the proposed<br>method is to improve the Power<br>quality (PQ) during load unbalancing<br>as well as variable irradiation<br>condition.                                            |

#### (Page 30)



| S.No                              | Project Code | Project Name                                                                                                                                                                                | Objective                                                                                                                                                      |
|-----------------------------------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 265                               | TEPGPS585    | A Variable Step Size Robust Least Mean<br>Logarithmic Square-Based Control Scheme for<br>Improved Power Quality of Grid-Interfaced PV<br>System<br>(Power Systems / Power Quality)          | The main objective of the proposed<br>method is to improve the Power<br>quality (PQ) during load unbalancing<br>as well as variable irradiation<br>condition.  |
| 266                               | TEPGPS586    | A Variable Step Size Robust Least Mean<br>Logarithmic Square-Based Control Scheme for<br>Improved Power Quality of Grid-Interfaced PV<br>System<br>(Power Systems / Solar Power Generation) | The main objective of the proposed<br>method is to improve the Power<br>quality (PQ) during load unbalancing<br>as well as variable irradiation<br>condition.  |
| 267                               | TEMACS74     | A PV-DSTATCOM with Adaptive DC-Link<br>Voltage for Grid Integration and PQ<br>Enhancement<br>(Control Systems)                                                                              | The main objective of the proposed<br>method is to decrease in the voltage<br>stress across the VSI switches and<br>improves the performance of the<br>system. |
| 268                               | TEPGCS68     | A PV-DSTATCOM with Adaptive DC-Link<br>Voltage for Grid Integration and PQ<br>Enhancement<br>(Control Systems)                                                                              | The main objective of the proposed<br>method is to decrease in the voltage<br>stress across the VSI switches and<br>improves the performance of the<br>system. |
| 269                               | TEPGPS583    | A PV-DSTATCOM with Adaptive DC-Link<br>Voltage for Grid Integration and PQ<br>Enhancement<br>(Power Systems / Power Quality)                                                                | The main objective of the proposed<br>method is to decrease in the voltage<br>stress across the VSI switches and<br>improves the performance of the<br>system. |
| 270                               | TEPGPS584    | A PV-DSTATCOM with Adaptive DC-Link<br>Voltage for Grid Integration and PQ<br>Enhancement<br>(Power Systems / Solar Power Generation)                                                       | The main objective of the proposed<br>method is to decrease in the voltage<br>stress across the VSI switches and<br>improves the performance of the<br>system. |
| 271                               | TEMAPS620    | A PV-DSTATCOM with Adaptive DC-Link<br>Voltage for Grid Integration and PQ<br>Enhancement<br>(Power Systems / Power Quality)                                                                | The main objective of the proposed<br>method is to decrease in the voltage<br>stress across the VSI switches and<br>improves the performance of the<br>system. |
| 272                               | TEMAPS621    | A PV-DSTATCOM with Adaptive DC-Link<br>Voltage for Grid Integration and PQ<br>Enhancement<br>(Power Systems / Solar Power Generation)                                                       | The main objective of the proposed<br>method is to decrease in the voltage<br>stress across the VSI switches and<br>improves the performance of the<br>system. |
| 273                               | TEMACS73     | A Novel Control Scheme using UAPF in an<br>Integrated PV Grid-tied System<br>(Control Systems)                                                                                              | The main objective of the proposed<br>method is to produce power quality<br>enhancement and extracts the<br>maximum power from renewable<br>energy sources.    |
| 274<br>( Page 31                  | TEPGCS67     | A Novel Control Scheme using UAPF in an<br>Integrated PV Grid-tied System                                                                                                                   | The main objective of the proposed<br>method is to produce power quality<br>Email: info@takeoffprojects.com                                                    |
| Nebeiter unun tekeeffereigete eem |              |                                                                                                                                                                                             |                                                                                                                                                                |

| S.No     | Project Code | Project Name                                                                                                                                                                                  | Objective                                                                                                                                                    |
|----------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          |              | (Control Systems)                                                                                                                                                                             | enhancement and extracts the maximum power from renewable energy sources.                                                                                    |
| 275      | TEMAPS618    | A Novel Control Scheme using UAPF in an<br>Integrated PV Grid-tied System<br>(Power Systems / Power Quality)                                                                                  | The main objective of the proposed<br>method is to produce power quality<br>enhancement and extracts the<br>maximum power from renewable<br>energy sources.  |
| 276      | TEMAPS619    | A Novel Control Scheme using UAPF in an<br>Integrated PV Grid-tied System<br>(Power Systems / Solar Power Generation)                                                                         | The main objective of the proposed<br>method is to produce power quality<br>enhancement and extracts the<br>maximum power from renewable<br>energy sources.  |
| 277      | TEPGPS581    | A Novel Control Scheme using UAPF in an<br>Integrated PV Grid-tied System<br>(Power Systems / Power Quality)                                                                                  | The main objective of the proposed<br>method is to produce power quality<br>enhancement and extracts the<br>maximum power from renewable<br>energy sources.  |
| 278      | TEPGPS582    | A Novel Control Scheme using UAPF in an<br>Integrated PV Grid-tied System<br>(Power Systems / Solar Power Generation)                                                                         | The main objective of the proposed<br>method is to produce power quality<br>enhancement and extracts the<br>maximum power from renewable<br>energy sources.  |
| 279      | TEMACS72     | A Multivariable Phase-Locked Loop-Integrated<br>Controller for Enhanced Performance of<br>Voltage Source Converters under Weak Grid<br>Conditions<br>(Control Systems)                        | The main objective of this paper is<br>to extend its stability margins and<br>enhance the voltage source<br>converters in extremely weak grid<br>conditions. |
| 280      | TEPGCS66     | A Multivariable Phase-Locked Loop-Integrated<br>Controller for Enhanced Performance of<br>Voltage Source Converters under Weak Grid<br>Conditions<br>(Control Systems)                        | The main objective of this paper is<br>to extend its stability margins and<br>enhance the voltage source<br>converters in extremely weak grid<br>conditions. |
| 281      | TEMAPE230    | A Multivariable Phase-Locked Loop-Integrated<br>Controller for Enhanced Performance of<br>Voltage Source Converters under Weak Grid<br>Conditions<br>(Power Electronics / DC - AC Converters) | The main objective of this paper is<br>to extend its stability margins and<br>enhance the voltage source<br>converters in extremely weak grid<br>conditions. |
| 282      | TEPGPE202    | A Multivariable Phase-Locked Loop-Integrated<br>Controller for Enhanced Performance of<br>Voltage Source Converters under Weak Grid<br>Conditions<br>(Power Electronics / DC - AC Converters) | The main objective of this paper is<br>to extend its stability margins and<br>enhance the voltage source<br>converters in extremely weak grid<br>conditions. |
| 283      | TEMAPS617    | A Multi-Source DC-AC Converter for Integrated<br>Hybrid Energy Storage Systems<br>(Power Systems / Hybrid Systems)                                                                            | The main objective of the proposed<br>method is to generate proper<br>switching losses by reducing<br>converter losses and to improve                        |
| (Page 32 | 2)           |                                                                                                                                                                                               | Email: info@takeoffprojects.com                                                                                                                              |

## **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                    | Objective                                                                                                                                                                                             |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              |                                                                                                                                                                 | efficiency by using a novel multi-source DC/AC converter.                                                                                                                                             |
| 284  | TEPGPS580    | A Multi-Source DC-AC Converter for Integrated<br>Hybrid Energy Storage Systems<br>(Power Systems / Hybrid Systems)                                              | The main objective of the proposed<br>method is to generate proper<br>switching losses by reducing<br>converter losses and to improve<br>efficiency by using a novel<br>multi-source DC/AC converter. |
| 285  | TEMAPE229    | A Multi-Source DC-AC Converter for Integrated<br>Hybrid Energy Storage Systems<br>(Power Electronics / DC - AC Converters)                                      | The main objective of the proposed<br>method is to generate proper<br>switching losses by reducing<br>converter losses and to improve<br>efficiency by using a novel<br>multi-source DC/AC converter. |
| 286  | TEPGPE201    | A Multi-Source DC-AC Converter for Integrated<br>Hybrid Energy Storage Systems<br>(Power Electronics / DC - AC Converters)                                      | The main objective of the proposed<br>method is to generate proper<br>switching losses by reducing<br>converter losses and to improve<br>efficiency by using a novel<br>multi-source DC/AC converter. |
| 287  | TEPGCS65     | A Multi-Source DC-AC Converter for Integrated<br>Hybrid Energy Storage Systems<br>(Control Systems)                                                             | The main objective of the proposed<br>method is to generate proper<br>switching losses by reducing<br>converter losses and to improve<br>efficiency by using a novel<br>multi-source DC/AC converter. |
| 288  | TEMACS71     | A Multi-Source DC-AC Converter for Integrated<br>Hybrid Energy Storage Systems<br>(Control Systems)                                                             | The main objective of the proposed<br>method is to generate proper<br>switching losses by reducing<br>converter losses and to improve<br>efficiency by using a novel<br>multi-source DC/AC converter. |
| 289  | TEMACS70     | A Distributed Multimode Control Strategy for<br>the Cascaded DC-DC Converter Applied to<br>MVAC Grid-Tied PV System<br>(Control Systems)                        | The main objective of the proposed<br>method is to improve the robustness<br>and applicability of the system by<br>using MPPT control strategy.                                                       |
| 290  | TEMAPE228    | A Distributed Multimode Control Strategy for<br>the Cascaded DC-DC Converter Applied to<br>MVAC Grid-Tied PV System<br>(Power Electronics / DC - DC Converters) | The main objective of the proposed<br>method is to improve the robustness<br>and applicability of the system by<br>using MPPT control strategy.                                                       |
| 291  | TEMAPS616    | A Distributed Multimode Control Strategy for<br>the Cascaded DC-DC Converter Applied to<br>MVAC Grid-Tied PV System<br>(Power Systems / Solar Power Generation) | The main objective of the proposed<br>method is to improve the robustness<br>and applicability of the system by<br>using MPPT control strategy.                                                       |
| 292  | TEPGPS579    | A Distributed Multimode Control Strategy for<br>the Cascaded DC-DC Converter Applied to<br>MVAC Grid-Tied PV System                                             | The main objective of the proposed<br>method is to improve the robustness<br>and applicability of the system by                                                                                       |



| S.No                            | Project Code | Project Name                                                                                                                                                                                         | Objective                                                                                                                                                       |
|---------------------------------|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                 |              | (Power Systems / Solar Power Generation)                                                                                                                                                             | using MPPT control strategy.                                                                                                                                    |
| 293                             | TEPGPE200    | A Distributed Multimode Control Strategy for<br>the Cascaded DC-DC Converter Applied to<br>MVAC Grid-Tied PV System<br>(Power Electronics / DC - DC Converters)                                      | The main objective of the proposed<br>method is to improve the robustness<br>and applicability of the system by<br>using MPPT control strategy.                 |
| 294                             | TEPGCS64     | A Distributed Multimode Control Strategy for<br>the Cascaded DC-DC Converter Applied to<br>MVAC Grid-Tied PV System<br>(Control Systems)                                                             | The main objective of the proposed<br>method is to improve the robustness<br>and applicability of the system by<br>using MPPT control strategy.                 |
| 295                             | TEMAPS588    | Model Based Maximum Power Point Tracking<br>Algorithm with Constant Power Generation<br>Capability and Fast DC Link Dynamics for Two<br>Stage PV Systems<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to propose a model based maximum<br>power point tracking algorithm with<br>constant power generation.                  |
| 296                             | TEPGPS551    | Model Based Maximum Power Point Tracking<br>Algorithm with Constant Power Generation<br>Capability and Fast DC Link Dynamics for Two<br>Stage PV Systems<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to propose a model based maximum<br>power point tracking algorithm with<br>constant power generation.                  |
| 297                             | TEMAPS587    | A Grid Frequency Support Control Strategy of<br>the Three Phase Cascaded H Bridge Based<br>Photovoltaic Generation System<br>(Power Systems / Solar Power Generation)                                | The main objective of this project is<br>to improve the grid frequency<br>stability in a grid connected solar PV<br>system                                      |
| 298                             | TEMAPE208    | A Grid Frequency Support Control Strategy of<br>the Three Phase Cascaded H Bridge Based<br>Photovoltaic Generation System<br>(Power Electronics / Multilevel Converters)                             | The main objective of this project is<br>to improve the grid frequency<br>stability in a grid connected solar PV<br>system                                      |
| 299                             | TEPGPS550    | A Grid Frequency Support Control Strategy of<br>the Three Phase Cascaded H Bridge Based<br>Photovoltaic Generation System<br>(Power Systems / Solar Power Generation)                                | The main objective of this project is<br>to improve the grid frequency<br>stability in a grid connected solar PV<br>system                                      |
| 300                             | TEPGPE180    | A Grid Frequency Support Control Strategy of<br>the Three Phase Cascaded H Bridge Based<br>Photovoltaic Generation System<br>(Power Electronics / Multilevel Converters)                             | The main objective of this project is<br>to improve the grid frequency<br>stability in a grid connected solar PV<br>system                                      |
| 301                             | TEMAPS584    | Three Phase Single Stage Photovoltaic<br>System with Synchronverter Control: Power<br>System Simulation Studies<br>(Power Systems / Distribution Systems)                                            | The main objective of this project is<br>to conduct an exploratory study of<br>the PV based synchronverter<br>system when subjected to various<br>disturbances. |
| 302                             | TEMAPS585    | Three Phase Single Stage Photovoltaic<br>System with Synchronverter Control: Power<br>System Simulation Studies<br>(Power Systems / Wind Power Generation)                                           | The main objective of this project is<br>to conduct an exploratory study of<br>the PV based synchronverter<br>system when subjected to various<br>disturbances. |
| ( <mark>303</mark><br>( Page 34 | TEMAPS586    | Three Phase Single Stage Photovoltaic                                                                                                                                                                | The main.objective of this project is<br>Email: info@takeoffprojects.com                                                                                        |

Phone: +91 9030333433, +91 8776681444

## **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                | Objective                                                                                                                                                       |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | System with Synchronverter Control: Power<br>System Simulation Studies<br>(Power Systems / Solar Power Generation)                                          | to conduct an exploratory study of<br>the PV based synchronverter<br>system when subjected to various<br>disturbances.                                          |
| 304  | TEPGPS547    | Three Phase Single Stage Photovoltaic<br>System with Synchronverter Control: Power<br>System Simulation Studies<br>(Power Systems / Distribution Systems)   | The main objective of this project is<br>to conduct an exploratory study of<br>the PV based synchronverter<br>system when subjected to various<br>disturbances. |
| 305  | TEPGPS548    | Three Phase Single Stage Photovoltaic<br>System with Synchronverter Control: Power<br>System Simulation Studies<br>(Power Systems / Wind Power Generation)  | The main objective of this project is<br>to conduct an exploratory study of<br>the PV based synchronverter<br>system when subjected to various<br>disturbances. |
| 306  | TEPGPS549    | Three Phase Single Stage Photovoltaic<br>System with Synchronverter Control: Power<br>System Simulation Studies<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to conduct an exploratory study of<br>the PV based synchronverter<br>system when subjected to various<br>disturbances. |
| 307  | TEMAPS565    | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Power Systems / Wind Power Generation)                    | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                                |
| 308  | TEMAED147    | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Electrical Drives / AC Drives)                            | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                                |
| 309  | TEPGPS530    | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Power Systems / Wind Power Generation)                    | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                                |
| 310  | TEPGED141    | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Electrical Drives / AC Drives)                            | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                                |
| 311  | TEMAPS583    | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Power Systems / Solar Power Generation)                   | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                                |
| 312  | TEPGPS546    | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Power Systems / Solar Power Generation)                   | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                                |
| 313  | TEMACS61     | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System                                                               | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water                                                   |



| S.No | Project Code | Project Name                                                                                                                                                                  | Objective                                                                                                                                         |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | (Control Systems)                                                                                                                                                             | pumping system.                                                                                                                                   |
| 314  | TEPGCS55     | Enhanced Control and Power Management For<br>A Renewable Energy-Based Water Pumping<br>System<br>(Control Systems)                                                            | The main objective of this project is<br>comprehensive dynamic analysis for<br>a renewable energy based water<br>pumping system.                  |
| 315  | TEMAPS580    | Three Level T Type Quasi Z Source PV Grid<br>Tied Inverter with Active Power Filter<br>Functionality under Distorted Grid Voltage<br>(Power Systems / Distribution Systems)   | The main objective of this project is<br>to provide the stability and good<br>dynamic response of the<br>grid-connected 3L T type QZSI.           |
| 316  | TEMAPS581    | Three Level T Type Quasi Z Source PV Grid<br>Tied Inverter with Active Power Filter<br>Functionality under Distorted Grid Voltage<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to provide the stability and good<br>dynamic response of the<br>grid-connected 3L T type QZSI.           |
| 317  | TEMAPS582    | Three Level T Type Quasi Z Source PV Grid<br>Tied Inverter with Active Power Filter<br>Functionality under Distorted Grid Voltage<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to provide the stability and good<br>dynamic response of the<br>grid-connected 3L T type QZSI.           |
| 318  | TEPGPS543    | Three Level T Type Quasi Z Source PV Grid<br>Tied Inverter with Active Power Filter<br>Functionality under Distorted Grid Voltage<br>(Power Systems / Distribution Systems)   | The main objective of this project is<br>to provide the stability and good<br>dynamic response of the<br>grid-connected 3L T type QZSI.           |
| 319  | TEPGPS544    | Three Level T Type Quasi Z Source PV Grid<br>Tied Inverter with Active Power Filter<br>Functionality under Distorted Grid Voltage<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to provide the stability and good<br>dynamic response of the<br>grid-connected 3L T type QZSI.           |
| 320  | TEPGPS545    | Three Level T Type Quasi Z Source PV Grid<br>Tied Inverter with Active Power Filter<br>Functionality under Distorted Grid Voltage<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to provide the stability and good<br>dynamic response of the<br>grid-connected 3L T type QZSI.           |
| 321  | TEMAPS579    | Solar Power Generation System with Power<br>Smoothing Function<br>(Power Systems / Solar Power Generation)                                                                    | The main objective of this project is<br>to increase power efficiency and<br>smoothens power fluctuations in the<br>Solar Power generation system |
| 322  | TEMAPE206    | Solar Power Generation System with Power<br>Smoothing Function<br>(Power Electronics / DC - DC Converters)                                                                    | The main objective of this project is<br>to increase power efficiency and<br>smoothens power fluctuations in the<br>Solar Power generation system |
| 323  | TEMAPE207    | Solar Power Generation System with Power<br>Smoothing Function<br>(Power Electronics / DC - AC Converters)                                                                    | The main objective of this project is<br>to increase power efficiency and<br>smoothens power fluctuations in the<br>Solar Power generation system |
| 324  | TEPGPE178    | Solar Power Generation System with Power<br>Smoothing Function<br>(Power Electronics / DC - DC Converters)                                                                    | The main objective of this project is<br>to increase power efficiency and<br>smoothens power fluctuations in the<br>Solar Power generation system |

# c R O U P

#### **Electrical-Latest-Titles**

| S.No | Project Code | Project Name                                                                                                                                                                                                 | Objective                                                                                                                                                                             |
|------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 325  | TEPGPE179    | Solar Power Generation System with Power<br>Smoothing Function<br>(Power Electronics / DC - AC Converters)                                                                                                   | The main objective of this project is<br>to increase power efficiency and<br>smoothens power fluctuations in the<br>Solar Power generation system                                     |
| 326  | TEPGPS542    | Solar Power Generation System with Power<br>Smoothing Function<br>(Power Systems / Solar Power Generation)                                                                                                   | The main objective of this project is<br>to increase power efficiency and<br>smoothens power fluctuations in the<br>Solar Power generation system                                     |
| 327  | TEMAPS578    | Multi Functional PV Inverter with Low Voltage<br>Ride Through and Constant Power Output<br>(Power Systems / Solar Power Generation)                                                                          | The main objective of this project is<br>to ensure a steady DC link voltage<br>and remains connected to the grid<br>during AC side low voltage and DC<br>side low irradiation faults. |
| 328  | TEMAPE205    | Multi Functional PV Inverter with Low Voltage<br>Ride Through and Constant Power Output<br>(Power Electronics / DC - AC Converters)                                                                          | The main objective of this project is<br>to ensure a steady DC link voltage<br>and remains connected to the grid<br>during AC side low voltage and DC<br>side low irradiation faults. |
| 329  | TEPGPE177    | Multi Functional PV Inverter with Low Voltage<br>Ride Through and Constant Power Output<br>(Power Electronics / DC - AC Converters)                                                                          | The main objective of this project is<br>to ensure a steady DC link voltage<br>and remains connected to the grid<br>during AC side low voltage and DC<br>side low irradiation faults. |
| 330  | TEPGPS541    | Multi Functional PV Inverter with Low Voltage<br>Ride Through and Constant Power Output<br>(Power Systems / Solar Power Generation)                                                                          | The main objective of this project is<br>to ensure a steady DC link voltage<br>and remains connected to the grid<br>during AC side low voltage and DC<br>side low irradiation faults. |
| 331  | TEMAPS577    | A Novel and High Gain Switched Capacitor<br>and Switched Inductor Based DC DC Boost<br>Converter with Low Input Current Ripple and<br>Mitigated Voltage Stresses<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to obtain low input current ripples<br>and mitigate the voltage stresses                                                                     |
| 332  | TEMAPE204    | A Novel and High Gain Switched Capacitor<br>and Switched Inductor Based DC DC Boost<br>Converter with Low Input Current Ripple and<br>Mitigated Voltage Stresses<br>(Power Electronics / DC - DC Converters) | The main objective of this project is<br>to obtain low input current ripples<br>and mitigate the voltage stresses                                                                     |
| 333  | TEPGPS540    | A Novel and High Gain Switched Capacitor<br>and Switched Inductor Based DC DC Boost<br>Converter with Low Input Current Ripple and<br>Mitigated Voltage Stresses<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to obtain low input current ripples<br>and mitigate the voltage stresses                                                                     |
| 334  | TEPGPE176    | A Novel and High Gain Switched Capacitor<br>and Switched Inductor Based DC DC Boost<br>Converter with Low Input Current Ripple and<br>Mitigated Voltage Stresses                                             | The main objective of this project is<br>to obtain low input current ripples<br>and mitigate the voltage stresses                                                                     |

Email: info@takeoffprojects.com



| S.No             | Project Code | Project Name                                                                                                                                        | Objective                                                                                                                                                                              |
|------------------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | (Power Electronics / DC - DC Converters)                                                                                                            |                                                                                                                                                                                        |
| 335              | TEMAPS576    | A Novel VFVDC Optimized Full Bridge Inverter<br>Control Strategy for Independent Solar Power<br>Systems<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to reduce the problem of power<br>harmonics, and compared the<br>proposed VFVDC optimized control<br>strategy with the SPWM control<br>method |
| 336              | TEPGPS539    | A Novel VFVDC Optimized Full Bridge Inverter<br>Control Strategy for Independent Solar Power<br>Systems<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to reduce the problem of power<br>harmonics, and compared the<br>proposed VFVDC optimized control<br>strategy with the SPWM control<br>method |
| 337              | TEMAPE219    | A New Single-Source Nine-Level Quadruple<br>Boost Inverter (NQBI) for PV Application<br>(Power Electronics / Multilevel Converters)                 | The main objective of this project is<br>to evaluate the performance of the<br>nine-level quadruple boost inverter<br>(NQBI) topology                                                  |
| 338              | TEPGPE191    | A New Single-Source Nine-Level Quadruple<br>Boost Inverter (NQBI) for PV Application<br>(Power Electronics / Multilevel Converters)                 | The main objective of this project is<br>to evaluate the performance of the<br>nine-level quadruple boost inverter<br>(NQBI) topology                                                  |
| 339              | TEMAPE226    | Multiphase Interleaved Converter Based on<br>Cascaded Non-Inverting Buck-Boost Converter<br>(Power Electronics / DC - DC Converters)                | The main objective of this project is<br>to investigate the characteristics of<br>the proposed buck-boost interleaved<br>converter during non-overlapping<br>gate signals operation.   |
| 340              | TEMAPE227    | Multiphase Interleaved Converter Based on<br>Cascaded Non-Inverting Buck-Boost Converter<br>(Power Electronics / DC - AC Converters)                | The main objective of this project is<br>to investigate the characteristics of<br>the proposed buck-boost interleaved<br>converter during non-overlapping<br>gate signals operation.   |
| 341              | TEPGPE198    | Multiphase Interleaved Converter Based on<br>Cascaded Non-Inverting Buck-Boost Converter<br>(Power Electronics / DC - DC Converters)                | The main objective of this project is<br>to investigate the characteristics of<br>the proposed buck-boost interleaved<br>converter during non-overlapping<br>gate signals operation.   |
| 342              | TEPGPE199    | Multiphase Interleaved Converter Based on<br>Cascaded Non-Inverting Buck-Boost Converter<br>(Power Electronics / DC - AC Converters)                | The main objective of this project is<br>to investigate the characteristics of<br>the proposed buck-boost interleaved<br>converter during non-overlapping<br>gate signals operation.   |
| 343              | TEMAPE225    | A Unified Active Damping for Grid and<br>Converter Current Feedback in Active Front<br>End Converters<br>(Power Electronics / DC - AC Converters)   | The main objective of this project is<br>to reduce the switching harmonics<br>and improve the system<br>performance.                                                                   |
| 344<br>( Page 38 | TEPGPE197    | A Unified Active Damping for Grid and                                                                                                               | The main objective of this project is<br>Email: info@takeoffprojects.com                                                                                                               |



| S.No            | Project Code       | Project Name                                                                                                                                                                     | Objective                                                                                                                                                                                     |
|-----------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                 |                    | Converter Current Feedback in Active Front<br>End Converters<br>(Power Electronics / DC - AC Converters)                                                                         | to reduce the switching harmonics<br>and improve the system<br>performance.                                                                                                                   |
| 345             | TEMAPE224          | High Efficiency and Voltage Conversion Ratio<br>Bidirectional Isolated DC-DC Converter for<br>Energy Storage System<br>(Power Electronics / DC - DC Converters)                  | : The main objective of this project is<br>to attain high efficiency and voltage<br>conversion ratio of a bidirectional<br>isolated dc-dc converter for energy<br>storage system.             |
| 346             | TEPGPE196          | High Efficiency and Voltage Conversion Ratio<br>Bidirectional Isolated DC-DC Converter for<br>Energy Storage System<br>(Power Electronics / DC - DC Converters)                  | : The main objective of this project is<br>to attain high efficiency and voltage<br>conversion ratio of a bidirectional<br>isolated dc-dc converter for energy<br>storage system.             |
| 347             | TEMAPS614          | A Generalized High Gain Multilevel Inverter for<br>Small Scale Solar Photovoltaic Applications<br>(Power Systems / Solar Power Generation)                                       | The main objective of this project is<br>to increase the low voltage levels of<br>PV panels by using high gain dc-dc<br>converters which are also known as<br>front-end converters.           |
| 348             | TEMAPE223          | A Generalized High Gain Multilevel Inverter for<br>Small Scale Solar Photovoltaic Applications<br>(Power Electronics / Multilevel Converters)                                    | The main objective of this project is<br>to increase the low voltage levels of<br>PV panels by using high gain dc-dc<br>converters which are also known as<br>front-end converters.           |
| 349             | TEPGPS577          | A Generalized High Gain Multilevel Inverter for<br>Small Scale Solar Photovoltaic Applications<br>(Power Systems / Solar Power Generation)                                       | The main objective of this project is<br>to increase the low voltage levels of<br>PV panels by using high gain dc-dc<br>converters which are also known as<br>front-end converters.           |
| 350             | TEPGPE195          | A Generalized High Gain Multilevel Inverter for<br>Small Scale Solar Photovoltaic Applications<br>(Power Electronics / Multilevel Converters)                                    | The main objective of this project is<br>to increase the low voltage levels of<br>PV panels by using high gain dc-dc<br>converters which are also known as<br>front-end converters.           |
| 351             | TEMAPE221          | Power Quality Enhancement of the Distribution<br>Network by Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle Controller<br>(Power Electronics / DC - DC Converters) | The main objective of this project is<br>to enhance the power quality of the<br>distribution network by using<br>Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle<br>Controller. |
| 352             | TEMAPE222          | Power Quality Enhancement of the Distribution<br>Network by Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle Controller<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to enhance the power quality of the<br>distribution network by using<br>Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle<br>Controller. |
| 353<br>( Page 3 | TEPGPE193<br>9)    | Power Quality Enhancement of the Distribution<br>Network by Multilevel STATCOM-Compensated                                                                                       | The main objective of this project is to enhance the power quality of the Email: info@takeoffprojects.com                                                                                     |
| Website:        | www.takeoffproject | s com Pho                                                                                                                                                                        | ne: +91 9030333433, +91 8776681444                                                                                                                                                            |

# c R O U P

| S.No | Project Code | Project Name                                                                                                                                                                     | Objective                                                                                                                                                                                                                            |
|------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | Based on Improved One-Cycle Controller<br>(Power Electronics / DC - DC Converters)                                                                                               | distribution network by using<br>Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle<br>Controller.                                                                                                                        |
| 354  | TEPGPE194    | Power Quality Enhancement of the Distribution<br>Network by Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle Controller<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to enhance the power quality of the<br>distribution network by using<br>Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle<br>Controller.                                        |
| 355  | TEMAPS613    | Power Quality Enhancement of the Distribution<br>Network by Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle Controller<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to enhance the power quality of the<br>distribution network by using<br>Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle<br>Controller.                                        |
| 356  | TEPGPS576    | Power Quality Enhancement of the Distribution<br>Network by Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle Controller<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to enhance the power quality of the<br>distribution network by using<br>Multilevel STATCOM-Compensated<br>Based on Improved One-Cycle<br>Controller.                                        |
| 357  | TEMAPE220    | Modeling and Control of Single-Stage<br>Quadratic-Boost Split Source Inverters<br>(Power Electronics / DC - AC Converters)                                                       | The main objective of this project is<br>to develop the recently proposed<br>Spilt-Source Inverter (SSI) topology<br>for improving its boosting<br>characteristics.                                                                  |
| 358  | TEPGPE192    | Modeling and Control of Single-Stage<br>Quadratic-Boost Split Source Inverters<br>(Power Electronics / DC - AC Converters)                                                       | The main objective of this project is<br>to develop the recently proposed<br>Spilt-Source Inverter (SSI) topology<br>for improving its boosting<br>characteristics.                                                                  |
| 359  | TEMAPE218    | A Three-Level Single Stage A-Source Inverter<br>with the Ability to Generate Active Voltage<br>Vector during Shoot-Through State<br>(Power Electronics / Multilevel Converters)  | The main objective of this project is<br>to gain the capability for applying an<br>active voltage vector during the<br>shoot-through state.                                                                                          |
| 360  | TEPGPE190    | A Three-Level Single Stage A-Source Inverter<br>with the Ability to Generate Active Voltage<br>Vector during Shoot-Through State<br>(Power Electronics / Multilevel Converters)  | The main objective of this project is<br>to gain the capability for applying an<br>active voltage vector during the<br>shoot-through state.                                                                                          |
| 361  | TEMAED157    | Soft Switching Multiphase Interleaved Boost<br>Converter with High Voltage Gain for EV<br>Applications<br>(Electrical Drives / Electrical Vehicles)                              | The main objective of the proposed<br>method is to reduce the switching<br>losses and improve the efficiency of<br>the system by using Soft Switching<br>Multiphase Interleaved Boost<br>Converter with High Voltage Gain<br>for EV. |

| S.No | Project Code | Project Name                                                                                                                                                                        | Objective                                                                                                                                                                                                                            |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 362  | TEPGED151    | Soft Switching Multiphase Interleaved Boost<br>Converter with High Voltage Gain for EV<br>Applications<br>(Electrical Drives / Electrical Vehicles)                                 | The main objective of the proposed<br>method is to reduce the switching<br>losses and improve the efficiency of<br>the system by using Soft Switching<br>Multiphase Interleaved Boost<br>Converter with High Voltage Gain<br>for EV. |
| 363  | TEMAED156    | A New Multi-Output DC-DC Converter for<br>Electric Vehicle Application<br>(Electrical Drives / Electrical Vehicles)                                                                 | The main objective of the proposed<br>method is to reduce the cross<br>regulation problems by using A New<br>Multi-Output DC-DC Converter for<br>Electric Vehicle Application                                                        |
| 364  | TEPGED150    | A New Multi-Output DC-DC Converter for<br>Electric Vehicle Application<br>(Electrical Drives / Electrical Vehicles)                                                                 | The main objective of the proposed<br>method is to reduce the cross<br>regulation problems by using A New<br>Multi-Output DC-DC Converter for<br>Electric Vehicle Application                                                        |
| 365  | TEMAED155    | Torque Ripple Reduction for BLDC Permanent<br>Magnet Motor Drive Using DC-Link Voltage<br>and Current Modulation<br>(Electrical Drives / AC Drives)                                 | The main objective of the proposed<br>method is to reduce the torque<br>ripple and improve the performance<br>of the system by using DC-link<br>voltage and current modulation.                                                      |
| 366  | TEPGED149    | Torque Ripple Reduction for BLDC Permanent<br>Magnet Motor Drive Using DC-Link Voltage<br>and Current Modulation<br>(Electrical Drives / AC Drives)                                 | The main objective of the proposed<br>method is to reduce the torque<br>ripple and improve the performance<br>of the system by using DC-link<br>voltage and current modulation.                                                      |
| 367  | TEMACS69     | Sliding Mode Predictive Current Control of<br>Permanent Magnet Synchronous Motor with<br>Cascaded Variable Rate Sliding Mode Speed<br>Controller<br>(Control Systems)               | The main objective of the proposed<br>method is to propose a sliding mode<br>control scheme for a direct-drive<br>PMSG based wind energy<br>conversion system.                                                                       |
| 368  | TEPGCS63     | Sliding Mode Predictive Current Control of<br>Permanent Magnet Synchronous Motor with<br>Cascaded Variable Rate Sliding Mode Speed<br>Controller<br>(Control Systems)               | The main objective of the proposed<br>method is to propose a sliding mode<br>control scheme for a direct-drive<br>PMSG based wind energy<br>conversion system.                                                                       |
| 369  | TEMAED154    | Sliding Mode Predictive Current Control of<br>Permanent Magnet Synchronous Motor with<br>Cascaded Variable Rate Sliding Mode Speed<br>Controller<br>(Electrical Drives / AC Drives) | The main objective of the proposed<br>method is to propose a sliding mode<br>control scheme for a direct-drive<br>PMSG based wind energy<br>conversion system.                                                                       |
| 370  | TEPGED148    | Sliding Mode Predictive Current Control of<br>Permanent Magnet Synchronous Motor with<br>Cascaded Variable Rate Sliding Mode Speed<br>Controller<br>(Electrical Drives / AC Drives) | The main objective of the proposed<br>method is to propose a sliding mode<br>control scheme for a direct-drive<br>PMSG based wind energy<br>conversion system.                                                                       |

# c R O U P

| S.No | Project Code | Project Name                                                                                                                                              | Objective                                                                                                                                                                                                                                       |
|------|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 371  | TEMACS68     | Sensorless Control Strategy of Permanent<br>Magnet Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer<br>(Control Systems)                         | The main objective of the proposed<br>method is to reduce the chattering<br>of the system and the observation<br>error by using Sensorless Control<br>Strategy of Permanent Magnet<br>Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer |
| 372  | TEPGCS62     | Sensorless Control Strategy of Permanent<br>Magnet Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer<br>(Control Systems)                         | The main objective of the proposed<br>method is to reduce the chattering<br>of the system and the observation<br>error by using Sensorless Control<br>Strategy of Permanent Magnet<br>Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer |
| 373  | TEMAED153    | Sensorless Control Strategy of Permanent<br>Magnet Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer<br>(Electrical Drives / AC Drives)           | The main objective of the proposed<br>method is to reduce the chattering<br>of the system and the observation<br>error by using Sensorless Control<br>Strategy of Permanent Magnet<br>Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer |
| 374  | TEPGED147    | Sensorless Control Strategy of Permanent<br>Magnet Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer<br>(Electrical Drives / AC Drives)           | The main objective of the proposed<br>method is to reduce the chattering<br>of the system and the observation<br>error by using Sensorless Control<br>Strategy of Permanent Magnet<br>Synchronous Motor Based on Fuzzy<br>Sliding Mode Observer |
| 375  | TEMACS67     | Design and Cascade PI Controller-Based<br>Robust Model Reference Adaptive Control of<br>DC-DC Boost Converter<br>(Control Systems)                        | The main objective of this project is<br>to track the desired signals and<br>regulate the plant process variables<br>in the most beneficial and optimized<br>way without delay and overshoot.                                                   |
| 376  | TEPGCS61     | Design and Cascade PI Controller-Based<br>Robust Model Reference Adaptive Control of<br>DC-DC Boost Converter<br>(Control Systems)                        | The main objective of this project is<br>to track the desired signals and<br>regulate the plant process variables<br>in the most beneficial and optimized<br>way without delay and overshoot.                                                   |
| 377  | TEMAPE217    | Design and Cascade PI Controller-Based<br>Robust Model Reference Adaptive Control of<br>DC-DC Boost Converter<br>(Power Electronics / DC - DC Converters) | The main objective of this project is<br>to track the desired signals and<br>regulate the plant process variables<br>in the most beneficial and optimized<br>way without delay and overshoot.                                                   |
| 378  | TEPGPE189    | Design and Cascade PI Controller-Based<br>Robust Model Reference Adaptive Control of<br>DC-DC Boost Converter<br>(Power Electronics / DC - DC Converters) | The main objective of this project is<br>to track the desired signals and<br>regulate the plant process variables<br>in the most beneficial and optimized<br>way without delay and overshoot.                                                   |



| S.No             | Project Code | Project Name                                                                                                                                                                     | Objective                                                                                                                                                |
|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|
| 379              | TEMAPS612    | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Power Systems / Microgrids)             | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 380              | TEMACS66     | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Control Systems)                        | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 381              | TEMAPE215    | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Power Electronics / DC - DC Converters) | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 382              | TEMAPE216    | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 383              | TEPGPE187    | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Power Electronics / DC - DC Converters) | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 384              | TEPGPE188    | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Power Electronics / DC - AC Converters) | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 385              | TEPGPS575    | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Power Systems / Microgrids)             | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 386              | TEPGCS60     | Implementation of Exact Linearization<br>Technique for Modeling and Control of DC DC<br>Converters in Rural PV Microgrid Application<br>(Control Systems)                        | The main objective of this project is<br>to reduce the losses and increasing<br>the efficiency of the use of energy in<br>a rural-microgrid application. |
| 387              | TEMAPS611    | Control and Management of Railway System<br>Connected to Microgrid Stations<br>(Power Systems / Microgrids)                                                                      | The main objective of this project is<br>to propose techno-economic<br>method for the energy storage by<br>using Super capacitors in the train.          |
| 388              | TEMAPE214    | Control and Management of Railway System<br>Connected to Microgrid Stations<br>(Power Electronics / DC - DC Converters)                                                          | The main objective of this project is<br>to propose techno-economic<br>method for the energy storage by<br>using Super capacitors in the train.          |
| 389              | TEPGPS574    | Control and Management of Railway System<br>Connected to Microgrid Stations<br>(Power Systems / Microgrids)                                                                      | The main objective of this project is<br>to propose techno-economic<br>method for the energy storage by<br>using Super capacitors in the train.          |
| 390<br>( Page 43 | TEPGPE186    | Control and Management of Railway System<br>Connected to Microgrid Stations                                                                                                      | The main objective of this project is to propose techno-economic<br>Email: info@takeoffprojects.com                                                      |

| S.No             | Project Code | Project Name                                                                                                                                                       | Objective                                                                                                                                                                                                            |
|------------------|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | (Power Electronics / DC - DC Converters)                                                                                                                           | method for the energy storage by using Super capacitors in the train.                                                                                                                                                |
| 391              | TEMAPS610    | Performance Improvement of Grid Interfaced<br>Hybrid System Using Distributed Power Flow<br>Controller Optimization Techniques<br>(Power Systems / Hybrid Systems) | The main objective of the proposed<br>method is to improve the reliability,<br>power quality, and transient stability<br>of a hybrid system by using<br>Distributed Power Flow Controller<br>Optimization Techniques |
| 392              | TEPGPS573    | Performance Improvement of Grid Interfaced<br>Hybrid System Using Distributed Power Flow<br>Controller Optimization Techniques<br>(Power Systems / Hybrid Systems) | The main objective of the proposed<br>method is to improve the reliability,<br>power quality, and transient stability<br>of a hybrid system by using<br>Distributed Power Flow Controller<br>Optimization Techniques |
| 393              | TEMAPS608    | Energy Management Strategy of AC DC Hybrid<br>Microgrid Based on Solid State Transformer<br>(Power Systems / Microgrids)                                           | The main objective of the proposed<br>method is to avoid the voltage<br>fluctuation and power mismatch by<br>using AC/DC hybrid microgrid based<br>on solid state transformer.                                       |
| 394              | TEMAPS609    | Energy Management Strategy of AC DC Hybrid<br>Microgrid Based on Solid State Transformer<br>(Power Systems / Hybrid Systems)                                       | The main objective of the proposed<br>method is to avoid the voltage<br>fluctuation and power mismatch by<br>using AC/DC hybrid microgrid based<br>on solid state transformer.                                       |
| 395              | TEMAPE213    | Energy Management Strategy of AC DC Hybrid<br>Microgrid Based on Solid State Transformer<br>(Power Electronics / DC - AC Converters)                               | The main objective of the proposed<br>method is to avoid the voltage<br>fluctuation and power mismatch by<br>using AC/DC hybrid microgrid based<br>on solid state transformer.                                       |
| 396              | TEPGPS571    | Energy Management Strategy of AC DC Hybrid<br>Microgrid Based on Solid State Transformer<br>(Power Systems / Microgrids)                                           | The main objective of the proposed<br>method is to avoid the voltage<br>fluctuation and power mismatch by<br>using AC/DC hybrid microgrid based<br>on solid state transformer.                                       |
| 397              | TEPGPS572    | Energy Management Strategy of AC DC Hybrid<br>Microgrid Based on Solid State Transformer<br>(Power Systems / Hybrid Systems)                                       | The main objective of the proposed<br>method is to avoid the voltage<br>fluctuation and power mismatch by<br>using AC/DC hybrid microgrid based<br>on solid state transformer.                                       |
| 398              | TEPGPE185    | Energy Management Strategy of AC DC Hybrid<br>Microgrid Based on Solid State Transformer<br>(Power Electronics / DC - AC Converters)                               | The main objective of the proposed<br>method is to avoid the voltage<br>fluctuation and power mismatch by<br>using AC/DC hybrid microgrid based<br>on solid state transformer.                                       |
| 399<br>( Page 44 | TEMAPS607    | A Model Predictive Control Strategy for<br>Performance Improvement of Hybrid Energy<br>Storage Systems in DC Microgrids                                            | The main objective of the proposed<br>method is to improve the transient<br>response and voltage stability of the<br>Email: info@takeoffprojects.com                                                                 |

| S.No | Project Code | Project Name                                                                                                                                                                          | Objective                                                                                                                                                                                                                                       |
|------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      |              | (Power Systems / Microgrids)                                                                                                                                                          | system by using a model Predictive<br>Control Strategy for Performance<br>Improvement of Hybrid Energy<br>Storage Systems.                                                                                                                      |
| 400  | TEPGPS570    | A Model Predictive Control Strategy for<br>Performance Improvement of Hybrid Energy<br>Storage Systems in DC Microgrids<br>(Power Systems / Microgrids)                               | The main objective of the proposed<br>method is to improve the transient<br>response and voltage stability of the<br>system by using a model Predictive<br>Control Strategy for Performance<br>Improvement of Hybrid Energy<br>Storage Systems. |
| 401  | TEMAPS606    | A DC-Side Fault-Tolerant Bidirectional AC-DC<br>Converter for Applications in Distribution<br>Systems<br>(Power Systems / Distribution Systems)                                       | The main objective of this project is<br>to offer bidirectional power flow<br>control and is robust to dc side<br>faults in distribution systems                                                                                                |
| 402  | TEMAPE212    | A DC-Side Fault-Tolerant Bidirectional AC-DC<br>Converter for Applications in Distribution<br>Systems<br>(Power Electronics / DC - AC Converters)                                     | The main objective of this project is<br>to offer bidirectional power flow<br>control and is robust to dc side<br>faults in distribution systems                                                                                                |
| 403  | TEPGPS569    | A DC-Side Fault-Tolerant Bidirectional AC-DC<br>Converter for Applications in Distribution<br>Systems<br>(Power Systems / Distribution Systems)                                       | The main objective of this project is<br>to offer bidirectional power flow<br>control and is robust to dc side<br>faults in distribution systems                                                                                                |
| 404  | TEPGPE184    | A DC-Side Fault-Tolerant Bidirectional AC-DC<br>Converter for Applications in Distribution<br>Systems<br>(Power Electronics / DC - AC Converters)                                     | The main objective of this project is<br>to offer bidirectional power flow<br>control and is robust to dc side<br>faults in distribution systems                                                                                                |
| 405  | TEMAPS605    | Power and Current Limiting Strategy Based on<br>Droop Controller with Floating Characteristic<br>for Grid-Connected Distributed Generations<br>(Power Systems / Distribution Systems) | The main objective of this project is<br>to improve the performance of grid<br>connected distribution generations<br>by employing power and current<br>limiting strategy.                                                                       |
| 406  | TEMACS65     | Power and Current Limiting Strategy Based on<br>Droop Controller with Floating Characteristic<br>for Grid-Connected Distributed Generations<br>(Control Systems)                      | The main objective of this project is<br>to improve the performance of grid<br>connected distribution generations<br>by employing power and current<br>limiting strategy.                                                                       |
| 407  | TEPGPS568    | Power and Current Limiting Strategy Based on<br>Droop Controller with Floating Characteristic<br>for Grid-Connected Distributed Generations<br>(Power Systems / Distribution Systems) | The main objective of this project is<br>to improve the performance of grid<br>connected distribution generations<br>by employing power and current<br>limiting strategy.                                                                       |
| 408  | TEPGCS59     | Power and Current Limiting Strategy Based on<br>Droop Controller with Floating Characteristic<br>for Grid-Connected Distributed Generations<br>(Control Systems)                      | The main objective of this project is<br>to improve the performance of grid<br>connected distribution generations<br>by employing power and current<br>limiting strategy.                                                                       |



| S.No | Project Code | Project Name                                                                                                                                                                        | Objective                                                                                                                                                                     |
|------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 409  | TEMAPS604    | Autonomous Control Based on Capacitor<br>Energy Storage of Converter for DC<br>Distribution System<br>(Power Systems / Distribution Systems)                                        | The main objective of the proposed<br>method is to improve the current<br>control capability by using Capacitor<br>Energy Storage of Converter for DC<br>Distribution System. |
| 410  | TEPGPS567    | Autonomous Control Based on Capacitor<br>Energy Storage of Converter for DC<br>Distribution System<br>(Power Systems / Distribution Systems)                                        | The main objective of the proposed<br>method is to improve the current<br>control capability by using Capacitor<br>Energy Storage of Converter for DC<br>Distribution System. |
| 411  | TEMAPS603    | Harmonic Suppression and Stability<br>Enhancement of a Voltage Sensorless Current<br>Controller for a Grid-Connected Inverter under<br>Weak Grid<br>(Power Systems / Power Quality) | The main objective of this project is<br>stability improvement of grid<br>connected inverter under weak grid<br>conditions.                                                   |
| 412  | TEPGPS566    | Harmonic Suppression and Stability<br>Enhancement of a Voltage Sensorless Current<br>Controller for a Grid-Connected Inverter under<br>Weak Grid<br>(Power Systems / Power Quality) | The main objective of this project is<br>stability improvement of grid<br>connected inverter under weak grid<br>conditions.                                                   |
| 413  | TEMAPS602    | Bidirectional Power Control Strategy for Super<br>Capacitor Energy Storage System Based on<br>MMC DC-DC Converter<br>(Power Systems / Power Quality)                                | The main objective of this project is<br>to employ a bidirectional power<br>control strategy for Super Capacitor<br>Energy Storage System Based on<br>MMC DC-DC Converter.    |
| 414  | TEMAPE211    | Bidirectional Power Control Strategy for Super<br>Capacitor Energy Storage System Based on<br>MMC DC-DC Converter<br>(Power Electronics / DC - DC Converters)                       | The main objective of this project is<br>to employ a bidirectional power<br>control strategy for Super Capacitor<br>Energy Storage System Based on<br>MMC DC-DC Converter.    |
| 415  | TEPGPS565    | Bidirectional Power Control Strategy for Super<br>Capacitor Energy Storage System Based on<br>MMC DC-DC Converter<br>(Power Systems / Power Quality)                                | The main objective of this project is<br>to employ a bidirectional power<br>control strategy for Super Capacitor<br>Energy Storage System Based on<br>MMC DC-DC Converter.    |
| 416  | TEPGPE183    | Bidirectional Power Control Strategy for Super<br>Capacitor Energy Storage System Based on<br>MMC DC-DC Converter<br>(Power Electronics / DC - DC Converters)                       | The main objective of this project is<br>to employ a bidirectional power<br>control strategy for Super Capacitor<br>Energy Storage System Based on<br>MMC DC-DC Converter.    |
| 417  | TEMAPS601    | A New Technique Implemented in Synchronous<br>Reference Frame for DVR Control under<br>Severe Sag and Swell Conditions<br>(Power Systems / Power Quality)                           | The main objective of this project is controlling of DVR in distribution systems under severe transient conditions.                                                           |
| 418  | TEPGPS564    | A New Technique Implemented in Synchronous<br>Reference Frame for DVR Control under<br>Severe Sag and Swell Conditions                                                              | The main objective of this project is controlling of DVR in distribution systems under severe transient                                                                       |

( Page 46 )

Email: info@takeoffprojects.com



| S.No             | Project Code       | Project Name                                                                                                           | Objective                                                                                                                                                                                                      |
|------------------|--------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |                    | (Power Systems / Power Quality)                                                                                        | conditions.                                                                                                                                                                                                    |
| 419              | TEMAPS600          | PLL Instability of Wind Turbines during Severe<br>Faults<br>(Power Systems / Wind Power Generation)                    | The main objective of this project is<br>to propose a hybrid solution that<br>combines an Adaptive-PLL with<br>impedance estimation during severe<br>faults occurred in wind turbines.                         |
| 420              | TEPGPS563          | PLL Instability of Wind Turbines during Severe<br>Faults<br>(Power Systems / Wind Power Generation)                    | The main objective of this project is<br>to propose a hybrid solution that<br>combines an Adaptive-PLL with<br>impedance estimation during severe<br>faults occurred in wind turbines.                         |
| 421              | TEMAPS598          | Modeling of a Droop-Controlled<br>Grid-Connected DFIG Wind Turbine<br>(Power Systems / Wind Power Generation)          | The main objective of this project is<br>to propose a linearized small-signal<br>model for modelling a droop<br>controlled grid connected DFIG wind<br>turbine.                                                |
| 422              | TEPGPS561          | Modeling of a Droop-Controlled<br>Grid-Connected DFIG Wind Turbine<br>(Power Systems / Wind Power Generation)          | The main objective of this project is<br>to propose a linearized small-signal<br>model for modelling a droop<br>controlled grid connected DFIG wind<br>turbine.                                                |
| 423              | TEMAPS597          | DC Bus Voltage Control of Wind Power Inverter<br>Based on First-Order LADRC<br>(Power Systems / Wind Power Generation) | The main objective of the proposed<br>method is to improve the stability of<br>the DC side voltage of the<br>direct-drive permanent magnet wind<br>power grid-connected inverter by<br>using First-Order LADRC |
| 424              | TEMACS63           | DC Bus Voltage Control of Wind Power Inverter<br>Based on First-Order LADRC<br>(Control Systems)                       | The main objective of the proposed<br>method is to improve the stability of<br>the DC side voltage of the<br>direct-drive permanent magnet wind<br>power grid-connected inverter by<br>using First-Order LADRC |
| 425              | TEPGCS57           | DC Bus Voltage Control of Wind Power Inverter<br>Based on First-Order LADRC<br>(Control Systems)                       | The main objective of the proposed<br>method is to improve the stability of<br>the DC side voltage of the<br>direct-drive permanent magnet wind<br>power grid-connected inverter by<br>using First-Order LADRC |
| 426              | TEPGPS560          | DC Bus Voltage Control of Wind Power Inverter<br>Based on First-Order LADRC<br>(Power Systems / Wind Power Generation) | The main objective of the proposed<br>method is to improve the stability of<br>the DC side voltage of the<br>direct-drive permanent magnet wind<br>power grid-connected inverter by<br>using First-Order LADRC |
| 427<br>( Page 47 | TEMAPS595          | An Improved Sliding Mode Direct Power<br>Control Strategy Based on Reactive Power                                      | The main objective of this project is to compensate reactive power for<br>Email: info@takeoffprojects.com                                                                                                      |
|                  | www.takeoffproject |                                                                                                                        | no: +01 0030333433 +01 8776681444                                                                                                                                                                              |



| S.No             | Project Code                              | Project Name                                                                                                                                                      | Objective                                                                                                                                                                           |  |  |  |
|------------------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|                  |                                           | Compensation for Vienna Rectifier<br>(Power Systems / Power Quality)                                                                                              | Vienna rectifier by using an<br>improved sliding mode DPC<br>Controlling topology                                                                                                   |  |  |  |
| 428              | TEMAPS596                                 | An Improved Sliding Mode Direct Power<br>Control Strategy Based on Reactive Power<br>Compensation for Vienna Rectifier<br>(Power Systems / Wind Power Generation) | The main objective of this project is<br>to compensate reactive power for<br>Vienna rectifier by using an<br>improved sliding mode DPC<br>Controlling topology                      |  |  |  |
| 429              | TEPGPS558                                 | An Improved Sliding Mode Direct Power<br>Control Strategy Based on Reactive Power<br>Compensation for Vienna Rectifier<br>(Power Systems / Power Quality)         | The main objective of this project is<br>to compensate reactive power for<br>Vienna rectifier by using an<br>improved sliding mode DPC<br>Controlling topology                      |  |  |  |
| 430              | TEPGPS559                                 | An Improved Sliding Mode Direct Power<br>Control Strategy Based on Reactive Power<br>Compensation for Vienna Rectifier<br>(Power Systems / Wind Power Generation) | The main objective of this project is<br>to compensate reactive power for<br>Vienna rectifier by using an<br>improved sliding mode DPC<br>Controlling topology                      |  |  |  |
| 431              | TEMAPS593                                 | Active and Reactive Power Control for Dual<br>Excited Synchronous Generator in Wind<br>Applications<br>(Power Systems / Power Quality)                            | The main objective of this project is<br>to control active power and reactive<br>power for dual excited synchronous<br>generator in wind applications.                              |  |  |  |
| 432              | TEMAPS594                                 | Active and Reactive Power Control for Dual<br>Excited Synchronous Generator in Wind<br>Applications<br>(Power Systems / Wind Power Generation)                    | The main objective of this project is<br>to control active power and reactive<br>power for dual excited synchronous<br>generator in wind applications.                              |  |  |  |
| 433              | TEPGPS556                                 | Active and Reactive Power Control for Dual<br>Excited Synchronous Generator in Wind<br>Applications<br>(Power Systems / Power Quality)                            | The main objective of this project is<br>to control active power and reactive<br>power for dual excited synchronous<br>generator in wind applications.                              |  |  |  |
| 434              | TEPGPS557                                 | Active and Reactive Power Control for Dual<br>Excited Synchronous Generator in Wind<br>Applications<br>(Power Systems / Wind Power Generation)                    | The main objective of this project is<br>to control active power and reactive<br>power for dual excited synchronous<br>generator in wind applications.                              |  |  |  |
| 435              | TEMAPS592                                 | Control of PV Systems for Multi machine<br>Power System Stability Improvement<br>(Power Systems / Solar Power Generation)                                         | The main objective of this project is<br>to achieve decarbonized operation<br>of power systems in response to<br>climate change and improving the<br>stability of the power system. |  |  |  |
| 436              | TEMACS62                                  | Control of PV Systems for Multi machine<br>Power System Stability Improvement<br>(Control Systems)                                                                | The main objective of this project is<br>to achieve decarbonized operation<br>of power systems in response to<br>climate change and improving the<br>stability of the power system. |  |  |  |
| 437<br>( Dogo 49 | TEPGPS555                                 | Control of PV Systems for Multi machine<br>Power System Stability Improvement                                                                                     | The main objective of this project is to achieve decarbonized operation                                                                                                             |  |  |  |
| (Page 48         | (Page 48) Email: info@takeoffprojects.com |                                                                                                                                                                   |                                                                                                                                                                                     |  |  |  |

| S.No             | Project Code | Project Name                                                                                                                                                   | Objective                                                                                                                                                                           |
|------------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  |              | (Power Systems / Solar Power Generation)                                                                                                                       | of power systems in response to<br>climate change and improving the<br>stability of the power system.                                                                               |
| 438              | TEPGCS56     | Control of PV Systems for Multi machine<br>Power System Stability Improvement<br>(Control Systems)                                                             | The main objective of this project is<br>to achieve decarbonized operation<br>of power systems in response to<br>climate change and improving the<br>stability of the power system. |
| 439              | TEMAPS590    | Faster Convergence Controller with Distorted<br>Grid Conditions for Photovoltaic Grid Following<br>Inverter System<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to improve power quality and<br>achieve zero steady state error by<br>using MDBHCC with PR controller.                                     |
| 440              | TEMAPS591    | Faster Convergence Controller with Distorted<br>Grid Conditions for Photovoltaic Grid Following<br>Inverter System<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to improve power quality and<br>achieve zero steady state error by<br>using MDBHCC with PR controller.                                     |
| 441              | TEPGPS553    | Faster Convergence Controller with Distorted<br>Grid Conditions for Photovoltaic Grid Following<br>Inverter System<br>(Power Systems / Power Quality)          | The main objective of this project is<br>to improve power quality and<br>achieve zero steady state error by<br>using MDBHCC with PR controller.                                     |
| 442              | TEPGPS554    | Faster Convergence Controller with Distorted<br>Grid Conditions for Photovoltaic Grid Following<br>Inverter System<br>(Power Systems / Solar Power Generation) | The main objective of this project is<br>to improve power quality and<br>achieve zero steady state error by<br>using MDBHCC with PR controller.                                     |
| 443              | TEMAPE209    | Two Stage Converter Standalone PV Battery<br>System Based on VSG Control<br>(Power Electronics / DC - DC Converters)                                           | The main objective of this project is<br>to adjust the inverter output and<br>realize the maximum power of the<br>PV scheme by using VSG controller                                 |
| 444              | TEMAPE210    | Two Stage Converter Standalone PV Battery<br>System Based on VSG Control<br>(Power Electronics / DC - AC Converters)                                           | The main objective of this project is<br>to adjust the inverter output and<br>realize the maximum power of the<br>PV scheme by using VSG controller                                 |
| 445              | TEMAPS589    | Two Stage Converter Standalone PV Battery<br>System Based on VSG Control<br>(Power Systems / Solar Power Generation)                                           | The main objective of this project is<br>to adjust the inverter output and<br>realize the maximum power of the<br>PV scheme by using VSG controller                                 |
| 446              | TEPGPS552    | Two Stage Converter Standalone PV Battery<br>System Based on VSG Control<br>(Power Systems / Solar Power Generation)                                           | The main objective of this project is<br>to adjust the inverter output and<br>realize the maximum power of the<br>PV scheme by using VSG controller                                 |
| 447              | TEPGPE181    | Two Stage Converter Standalone PV Battery<br>System Based on VSG Control<br>(Power Electronics / DC - DC Converters)                                           | The main objective of this project is<br>to adjust the inverter output and<br>realize the maximum power of the<br>PV scheme by using VSG controller                                 |
| 448<br>( Page 49 | TEPGPE182    | Two Stage Converter Standalone PV Battery<br>System Based on VSG Control                                                                                       | The main objective of this project is to adjust the inverter output and Email: info@takeoffprojects.com                                                                             |



| S.No | Project Code | Project Name                             | Objective                                                          |
|------|--------------|------------------------------------------|--------------------------------------------------------------------|
|      |              | (Power Electronics / DC - AC Converters) | realize the maximum power of the PV scheme by using VSG controller |

Website: www.takeoffprojects.com

### The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments



#### Surekha 5.0 $\star \star \star \star \star$

5 star to the company for its outstanding support, new technology & support



#### 4.5 \* \* \* \* \*

Very nice project support, the explanation with the kit were very useful and easy to understand...



#### Madhu Sudan Reddy 5.0 \* \* \* \* \*

You guys always come up with exciting new technologies...impressive!!! Keep it up...

# **Our Customer Base**



1-5-558, 1st Floor, 2nd Streat, Balaji Colony, Tirupati, Andhra Pradesh-517502.

# +91 90303 33433 | 0877-2261612

www.takeoffprojects.com | info@takeoffprojects.com 🛛 🗗 🖿 🦉 💌 /TakeoffEduGroup