

ACADEMIC LIVE PROJECTS 2024-25

COMPUTER SCIENCE

- V Python
- M Android
- М РНР
 - 🖌 Java & more

+91 9030 333 433, +91 8776 681 444

	Project Id	Titles	Domain
1.		A Hybrid Network Analysis and Machine Learning Model for Enhanced	
	TCMAPY1295	Financial Distress Prediction	
			AI
		This project aims to enhance financial distress prediction by integrating	
		network analysis and advanced machine learning. Using a Kaggle dataset,	
		ensemble methods like voting classifiers and Random Forest will be employed	
		to classify companies accurately. The goal is to provide a reliable tool for	
		timely interventions and strategic planning in financial risk management.	
2.		A Semi-Supervised Learning Approach to Quality-Based Web Service	AI
	TCMAPY1296	Classification	
		This project aims to create a semi-supervised learning framework for classifying	
		web services based on quality. It utilizes both labeled and unlabeled data: labeled	
		data guides classification, while unlabeled data improves generalization across	
		diverse data distributions. The goal is to automate and enhance the evaluation of	
		web service quality attributes effectively	
		web service quanty attributes encenvery.	
3.		A Novel Web Framework for Cervical Cancer Detection System A	
	TCMAPY1235	Machine Learning Breakthrough	
			AI
		This research introduces a novel web framework for cervical cancer detection	
		using advanced machine learning techniques. It integrates AdaBoost, XGBoost,	
		stacking classifier, and logistic regression models to improve diagnostic	
		accuracy. The objective is to enhance early detection and intervention processes,	
		aiming to improve patient outcomes in cervical cancer management.	

	Project Id	Titles	Domain
4.		A Predictive Discrete Event Simulation for Predicting Operation Times in	AI
		Container Terminal	
		This study aims to develop and evaluate a predictive discrete event simulation	
		model for forecasting operation times in container terminals. Using various	
		machine learning algorithms (Linear Regression, Decision Tree, Random	
		Forest, SVM, XGBoost, CatBoost, ANN), it aims to enhance prediction	
		accuracy for delivery dates, optimizing logistics and supply chain management	
		efficiency.	
5.		Active Machine Learning For Heterogeneity Activity Recognition Through	AI
	TCMAPY1271	Smartwatch Sensors	
		This project sime to create an efficient activity recognition system using	
		smartwatch sensors. It leverages active machine learning to classify activities	
		like walking running biking and standing based on accelerometer and	
		avroscope data. By reducing labeled data needs through active learning, it aims	
		by lower labeling costs while continuously refining model performance	
		to lower labeling costs while continuously remning model performance.	
0.		Advancing Bankruptcy Forecasting with	AI
	ICMAPY1228	Hybrid Machine Learning Techniques Insights From An Unbalanced Polish	
		Dataset	
		This project aims to enhance bankruptcy prediction accuracy using advanced	
		machine learning on an unbalanced Polish dataset. By employing ensemble	
		learning, deep learning, and feature engineering, it seeks to develop a robust	
		model for identifying potential bankruptcies with high precision and recall,	
		benefiting financial institutions in risk mitigation and decision-making.	
	1		

	Project Id	Titles	Domain
7.	TCMAPY1224	An Ensemble Deep Learning Model for Vehicular Engine Health Prediction	AI
		This project aims to develop an ensemble deep learning model combining Random Forest and KNN algorithms for predictive maintenance of vehicular engines. By leveraging Real-time sensor data and historical records, it seeks to enhance accuracy in identifying early signs of engine degradation, thus improving reliability and optimizing operational efficiency in automotive engineering.	
8.	ТСМАРУ1227	An Advanced Approach For Detecting Behavior-Based Intranet Attacks By Machine Learning	AI
	TCMAF 11227	The project aims to develop a sophisticated system using machine learning to identify and mitigate intranet attacks. By analyzing behavioral patterns and network data, it seeks to detect unauthorized access, data exfiltration, and malware infections. The goal is to enhance intranet security through real-time detection and response capabilities, safeguarding critical network assets effectively.	

	Project Id	Titles	Domain
9.	TCMAPY1238	Classifying Tor Traffic Encrypted Payload Using Machine Learning	AI
		This study introduces a robust ML framework to classify encrypted Tor traffic	
		payloads for cybersecurity enhancement. Using diverse features like Source Port,	
		Destination Port, and IAT, Decision Tree, Logistic Regression, and XGBoost	
		models are evaluated for accurately predicting traffic nature ('label'). It aims to	
		optimize real-time encrypted traffic analysis for secure network environments.	
10.		Comparative Analysis Of Machine Learning Algorithms For 5g Coverage	AI
		Prediction: Identification Of Dominant Feature Parameters And Prediction	
		Accuracy	
		This research compares traditional and advanced machine learning algorithms to	
		predict accurate 5G coverage using RF Signal Data with Band Width as the	
		target. Models like Logistic Regression, KNN, Random Forest, SVM, XGBoost,	
		LSTM, and others are evaluated to determine the most effective and efficient	
		model for optimizing 5G networks.	
11.	TCMAPY1303	Explainable Data Driven Digital Twins For Predicting Battery States In	AI
		Electric Vehicles	
		This project aims to develop an advanced predictive model for electric vehicle	
		battery states using Explainable Data-Driven Digital Twins. It integrates diverse	
		machine learning algorithms (DNN, LSTM, CNN, SVR, SVM, FNN, RBF, RF,	
		XGBoost) to accurately forecast SOC and SOH. Emphasis is placed on	
		enhancing model transparency to optimize EV performance and support	
		sustainable automotive technologies.	

	Project Id	Titles	Domain
12.		Gynaecological Disease Diagnosis Expert System GDDES Based On Machine	AI
		Learning Algorithm And Natural Language Processing	
		The GDDES project aims to develop a diagnostic tool for gynaecological	
		disorders using ML and NLP. It enhances diagnostic accuracy by comparing	
		traditional (Decision Tree, Random Forest, SVM, Naïve Bayes, KNN) and	
		advanced models (Logistic Regression, Gradient Boosting). NLP enables	
		analysis of unstructured patient data for efficient, automated diagnosis, aiming to	
		improve healthcare outcomes.	
12			
13.		Hybrid Machine Learning Model For Efficient Botnet Attack Detection In	Al
		iot Environment	
		Developing a hybrid ML model for efficient botnet attack detection in IoT	
		environments. Integrates diverse ML techniques to enhance detection accuracy,	
		leveraging IoT-specific data characteristics. Aimed at improving cybersecurity	
		by identifying and mitigating botnet threats effectively in IoT networks.	
14.		Incorporating Meteorological Data and Pesticide Information to Forecast	AI
		Crop Yields Using Machine Learning	
		This project aims to enhance crop yield forecasting accuracy by integrating	
		meteorological data and pesticide information using Decision Tree, Random	
		Forest, and XGBoost Regressor. It seeks to improve agricultural decision-	
		making with higher predictive performance metrics, supporting optimized crop	
		management and sustainability practices in response to environmental and	
		economic dynamics.	

	Project Id	Titles	Domain
15.		Intelligent Ultrasound Imaging For Enhancedbreast Cancer Diagnosis:	AI
		Ensemble Transfer Learning Strategies	
		This project sime to develop an intelligent ultrasound imaging system for	
		anhanced breast cancer diagnosis. It includes assembling a diverse dataset	
		applying preprocessing techniques, and using transfer learning with deep	
		learning models. Machine learning methods like MI P and SVM will be fine-	
		tuned to create a reliable system for early and accurate breast cancer detection	
16.		Investigating Evasive Techniques In SMS Spam Filtering A Comparative	AI
	TCMAPY1259	Analysis Of Machine Learning Models	
		This study evaluates machine learning models for SMS spam detection using	
		Decision Tree, Random Forest, Roberta, and Distil Roberta algorithms on a	
		Kaggle dataset. It aims to identify the most effective model based on accuracy,	
		precision, and recall, addressing the challenges of detecting and mitigating SMS	
		spam effectively.Bottom of Form	
17.		Iot-Based Smart Biofloc Monitoring System For Fish Farming Using	AI
		Machine Learning.	
		This study aims to develop an IoT-based smart Biofloc monitoring system for	
		fish farming. Using machine learning algorithms (Random Forest, Decision	
		Tree, SVM, Logistic Regression, XGBoost, Gaussian Naive Bayes) on	
		Aquaponics Fish Pond data, it predicts water quality parameters to enhance	
		aquaculture efficiency and sustainability through effective management of fish	
		health and water conditions.	

	Project Id	Titles	Domain
18		Machina Laarning Basad Diagnostic Paradigm in Viral and Nan Viral	AT
10.		Honotocollulor Consinomo	AI
		nepatocentuar Carcinoma	
		The project aims to develop a machine learning-based diagnostic tool to accurately	
		classify hepatocellular carcinoma into viral and non-viral types, enhancing	
		diagnostic accuracy and supporting personalized treatment strategies.	
19.		Machine Learning for Real-Time Fuel Consumption Prediction and Driving	AI
		Profile Classification Based on ECU Data	
		This project aims to develop and validate machine learning models for real-time	
		fuel consumption prediction and driving profile classification using ECU data,	
		comparing Random Forest, Logistic Regression, and AdaBoost algorithms to	
		optimize fuel efficiency and driving behavior.	
20.		Machine Learning Algorithms for Forecasting and Categorizing Euro-to-	AI
	TCMAPY1304	Dollar Exchange Rates	
		This project aims to enhance Euro-to-Dollar exchange rate forecasting by applying	
		machine learning techniques, including neural networks and ensemble methods,	
		to analyze historical data, improve prediction accuracy, and support informed	
		financial decision-making.	
21.		Open-Set Recognition in Unknown DDoS Attacks Detection With Reciprocal	AI
	TCMAPY1237	Points Learning	
		This study introduces Reciprocal Points Learning for Open-Set Recognition in	
		DDoS attack detection, using Passive Aggressive, Random Forest, and Decision	
		Tree algorithms to enhance detection accuracy and robustness against evolving	
		threats.	
22.	TCMAPY1299	PDF Malware Detection: Toward Machine Learning Modeling With Explainability Analysis	AI
		This project develops a machine learning system to detect malware in PDF files.	
		evaluating algorithms like Random Forest, SVM, AdaBoost, and DNN, aiming for	
		high accuracy and interpretability to enhance cybersecurity.	

c R O U P

	Project Id	Titles	Domain
23.		Predicting Hospital Stay Length Using Explainable Machine Learning	AI
		The objective of this study is to develop and evaluate predictive models for	
		hospital stay length using machine learning algorithms, including Logistic	
		Regression, MLP, Random Forest, Gradient Boosting, and XGBoost.	
		Additionally, the study aims to utilize explainability tools to interpret model	
		predictions and identify the key determinants of hospital stay durations.	
24.		Robustness Of Workload Forecasting Models In Cloud Data Centers: A	AI
		White-Box Adversarial Attack Perspective	
		The primary objective of this study is to evaluate the robustness of various	
		workload forecasting algorithms-RNN, LSTM, and CNN-against white-box	
		adversarial attacks. By using the Kaggle dataset *"Workload Trace,"* the research	
		aims to quantify the impact of these attacks on forecasting accuracy and model	
		performance. Additionally, the study seeks to identify vulnerabilities in each	
		model and propose strategies for enhancing their resilience to adversarial	
		perturbations, ultimately improving the reliability of workload forecasting in	
		cloud data centers.	
25.		Sensor Fusion And Machine Learning For Seated Movement Detection	AI
	TCMAPY1236	With Trunk Orthosis	
		This study aims to enhance seated movement detection using trunk orthoses by	
		comparing Decision Trees, Random Forests, and Stacking Classifiers with KNN,	
		integrating IMU and EMG sensor data for improved accuracy and reliability.	
26.		Transparency and Privacy The Role of Explainable AI and Federated	AI
		Learning in Financial Fraud Detection	
		This project advances financial fraud detection by integrating Explainable AI and	
		Federated Learning, enhancing transparency and privacy. It compares traditional	
		algorithms with newer methods to develop a robust, interpretable, and confidential	
		system.	

	Project Id	Titles	Domain
27.		A Dynamic Selection Hybrid Model for Advancing Thyroid Care With	AI
		BOOST Balancing Method	
		This study aims to develop a Dynamic Selection Hybrid Model for thyroid	
		disorder diagnosis, integrating Decision Trees, SVM, KNN, Random Forest,	
		AdaBoost, and Gradient Boosting within an Adaptive Ensemble Framework to	
		enhance diagnostic accuracy and adaptability.	
28.		A Framework for LLM-Assisted Smart Policing System	AI
	TCMAPY1292	This research aims to develop a Smart Policing System framework using GPT-4	
		and XLNet to enhance predictive accuracy, real-time crime analysis, address	
		ethical concerns, optimize resources, and adapt to modern policing challenges.	
29.	TCMAPY1235	A Novel Web Framework for Cervical Cancer Detection System A Machine Learning Breakthrough	AI
		This research introduces a web framework for cervical cancer detection using	
		AdaBoost, XGBoost, stacking classifier, and logistic regression. It aims to	
		enhance diagnostic accuracy, streamline early detection, and improve patient	
		outcomes.	
30.		Advancing Fake News Detection Hybrid Deep Learning With FastText and Explainable AI	AI
		This project aims to develop a fake news detection system integrating XLNet,	
		FastText, and CNNs for accuracy, with LIME for explainability, enhancing	
		performance and transparency to improve misinformation identification and	
		public trust.	
31.	TCMAPY1230	An Improved Concatenation of Deep Learning Models for Predicting and Interpreting Ischemic Stroke	AI
		The objective is to develop an enhanced ischemic stroke predictive model by integrating deep learning with traditional classifiers, improving accuracy, interpretability, and validating the effectiveness of this unified approach for stroke prediction.	
32.		Applying Machine Learning Algorithms for the Classification of Sleep Disorders The project aims to develop a web-based machine learning system for classifying	AI
		insomnia and sleep apnea using Stacking and Voting Classifiers, enhancing	
		predictive accuracy and automating diagnosis with the Sleep Health dataset.	

	Project Id	Titles	Domain
33.		Comparative Analysis of Machine Learning Algorithms for 5G Coverage Prediction: Identification of Dominant Feature Parameters and Prediction Accuracy	AI
		This research aims to compare traditional and advanced machine learning	
		algorithms for predicting 5G coverage using RF Signal Data, evaluating models	
		like Logistic Regression, SVM, CNN, and others to identify the most accurate and	
		efficient solution.	
34.		Cotton Yield Prediction A Machine Learning Approach with Field and Synthetic Data	AI
		This study aims to enhance cotton yield prediction by implementing a stacking	
		classifier with Decision Trees and AdaBoost, integrating field and synthetic data	
		to improve accuracy, robustness, and informed agricultural decision-making.	
35.	TCMAPY1308	Enhancing Medicare Fraud Detection Through Machine Learning Addressing Class Imbalance With SMO	AI
		The objective of this project is to improve the efficiency and accuracy of detecting	
		Medicare fraud by leveraging SMOTE-ENN to balance datasets and employing	
		advanced machine learning algorithms for robust fraud identification	
36.	TCMAPY1222	Exploring Deep Learning and Machine Learning Approaches for Brain	AI
		Hemorrhage Detection	
		This project aims to develop a diagnostic model using ResNet and MobileNet to	
		classify neuroimages into normal or stroke categories, enhancing accuracy and	
		speed for early detection and improved patient outcomes.	
37.		Innovations in Stroke Identification A Machine Learning-Based Diagnostic	AI
		Model Using Neuroimages	
		This project aims to develop a diagnostic model using ResNet and MobileNet to	
		classify neuroimages as normal or stroke. The model seeks to enhance diagnostic	
		accuracy, speed, and improve patient outcomes.	

	Project Id	Titles	Domain
38.		Investigating Evasive Techniques in SMS Spam Filtering A Comparative	AI
	TCMAPY1259	Analysis of Machine Learning Models	
		This study aims to evaluate Decision Tree, Random Forest, Roberta, and Distil	
		Roberta models for SMS spam detection, comparing their accuracy, precision, and	
		recall to improve spam detection and resilience.	
39.		Lumbar Disease Classification Using an Involutional Neural Based VGG Nets INVGG	AI
		This study aims to enhance lumbar spine disease classification by developing the	
		InVGG model with VGG modifications and comparing it to the Vision	
		Transformer (ViT) using the RSNA 2024 dataset for improved diagnostic	
		accuracy.	
40.		Machine Learning-Based Problem Space Reduction in Stochastic	AI
		Programming Models An Application in Biofuel Supply Chain Network	
		Design	
		This study aims to enhance problem space reduction in stochastic programming	
		for biofuel supply chains using Time Series Models and Gradient Boosting	
		Machines to improve forecasting, decision-making, and efficiency under	
		uncertainty.	
41.		Machine Learning-Based Cellular Traffic Prediction Using Data Reduction	AI
	TCMAPY1275	Techniques	
		Develop a robust framework for predicting cellular traffic load using advanced	
		machine learning algorithms and data reduction techniques, enhancing prediction	
		accuracy, reducing computational complexity, and optimizing network	
		management and resource allocation in cellular networks.	
42.		ML-Powered Handwriting Analysis for Early Detection of Alzheimers Disease	AI
		This project aims to enhance early Alzheimer's Disease detection through	

	Project Id	Titles	Domain
		handwriting analysis by integrating MLP, Decision Trees, AdaBoost, and	
		Gradient Boosting, with K-Best feature selection to improve diagnostic accuracy	
		and intervention.	
43.		Multi-Class Adaptive Active Learning for Predicting Student Anxiety	AI
	TCMAPY1302		
		This study aims to enhance student anxiety prediction accuracy using Decision	
		Tree, Stacking Classifier, KNN, Logistic Regression, XGBoost, Naive Bayes, and	
		Random Forest, with Multi-Class Adaptive Active Learning for optimized model	
		efficiency.	
44.		Multi-Fruit Classification and Grading Using a Same-Domain Transfer	AI
		Learning Approach	
		This study aims to improve fruit classification and grading accuracy by integrating	
		traditional models (SVM, KNN, Decision Trees, Random Forest) with deep	
		learning methods, including EfficientNetV2, ResNet, and VGG, using the	
		FruitNet dataset.	
45.		Novel Sentiment Majority Voting Classifier and Transfer Learning-Based	AI
		Feature Engineering for Sentiment Analysis of Deepfake Tweets	
		This study aims to enhance sentiment analysis of deepfake-related tweets by	
		integrating Random Forest and BERT with a Sentiment Majority Voting	
		Classifier, using transfer learning and ensemble methods for improved accuracy	
		and reliability.	
46.	TCMAPY1288	Novel Transfer Learning Based Deep Features for Diagnosis of Down	AI
		Syndrome in Children Using Facial Images	
		This study aims to develop a non-invasive, accurate Down syndrome diagnostic	
		tool using facial images. It integrates VNL-Net with VGG16 and Non-Negative	
		Matrix Factorization, and MobileNet + SVM for efficient, real-time detection.	

	Project Id	Titles	Domain
47.		Predicting Energy Demand Using Machine Learning Exploring Temporal	Al
	TCMAPY1290	and Weather-Related Patterns Variations and Impacts	
		This project aims to use machine learning to predict energy demand by analyzing	
		temporal and weather patterns, enhancing energy management, resource	
		allocation, and planning, and showcasing the role of advanced techniques in	
		managing fluctuating demand.	
48.		Product Helpfulness Detection With Novel Transformer Based BERT	AI
		Embedding and Class Probability Features	
		The objective is to integrate LSTM networks with BERT embeddings for	
		product helpfulness detection, improving classification accuracy, providing	
		confidence insights, and showcasing the LSTMBERT model's superiority over	
		traditional methods.	
49.		SmartSentry Cyber Threat Intelligence in Industrial IoT	AI
		The project aims to develop SmartSentry, a comprehensive CTI framework for	
		HoT systems using machine learning and deep learning techniques, including RF,	
		DT, SVM, and DNN, with SMOTE for robust anomaly detection.	
50.	TCMAPY1261	Toward Improving Breast Cancer Classification Using an Adaptive Voting	AI
		Ensemble Learning Algorith	
		This project aims to enhance breast cancer classification by developing an adaptive voting ensemble algorithm that integrates Decision Tree and Random Forest classifiers, dynamically assigning weights for improved accuracy and early detection.	
51.		Decentralized Traceability And Direct Marketing Of Agriculture Supply	Block Chain
		Unains	
		This project enhances aspect-based sentiment analysis by evaluating DeBERTa,	
		PaLM, and GPT-3.5-Turbo models across review domains, aiming to improve	
		accuracy, address domain specificity challenges, and guide future ABSA research	
		and development.	

	Project Id	Titles	Domain
52.		Discontinuous Reception Based Energy-Efficient User Association for 5G Heterogeneous Networks	Block Chain
		This project develops an efficient load balancing scheme for 5G HetNets,	
		optimizing DRX parameters, managing network overloads, and redistributing data	
		to enhance power efficiency, alleviate BS overloading, and ensure consistent QoS.	
53.		Formal Verification of Justification and Finalization in Beacon Chain	Block Chain
		This project enhances Ethereum 2.0 Beacon Chain security by formally verifying	
		state initialization, checkpoint justification, and finalization using the PAT	
		model checker, ensuring correctness and preventing critical errors in the	
		network.	
54.		Preventing 51% Attack by Using Consecutive Block Limits in Bitcoin	Block Chain
		The objective of this project is to develop and validate a modified Proof of Work	
		(PoW) consensus algorithm that effectively prevents 51% attacks in the Bitcoin	
		network. The project aims to enhance the security and integrity of the blockchain	
		by introducing a "Safe Mode Detection" mechanism that scrutinizes incoming	
		blocks and detects double-spending attempts. Through rigorous simulation and	
		analysis, the project seeks to demonstrate the algorithm's ability to maintain a	
		decentralized network structure while ensuring transaction accuracy and	
		preventing malicious activities. Ultimately, the goal is to provide a scalable and	
		robust solution applicable to various blockchain networks.	
55.		Recovering Static and Time-Varying Communities Using Persistent Edges	Block Chain
		This project enhances community detection in temporal networks by developing	
		spectral clustering methods incorporating temporal information, distinguishing	
		fresh and persistent edges, and outperforming traditional techniques, validated on	
		synthetic and real-world datasets.	
56.		ROBB: Recurrent Proximal Policy Optimization Reinforcement Learning	Block Chain
		for Optimal Block Formation in Bitcoin Blockchain Network	

	Project Id	Titles	Domain
		This project develops a Reinforcement Learning model using Recurrent Proximal	
		Policy Optimization (RPPO) to optimize Bitcoin block formation, adjusting block	
		size dynamically to improve efficiency, scalability, and user experience in	
		blockchain networks.	
57		Securing Sensing in Supply Chaing, Opportuniting Duilding Plasting and	Plack Chain
57.		Designs	DIOCK CHAIN
		This project develops secure end-to-end sensing for supply chains using trusted	
		sensors, TEEs, and blockchain to ensure data integrity, authenticity, and	
		completeness, enhancing transparency, security, and efficiency in multi-	
		stakeholder environments.	
58.		A Lightweight Image Encryption Algorithm Based on Secure Key	Cloud Computing
		This research develops an enhanced AES algorithm with innovative key	
		generation, dynamic substitution boxes, and circular permutation, aiming to	
		improve data security and efficiency, especially for IoT and edge-fog-cloud	
		systems.	
59.		Cloud-Assisted Privacy-Preserving Spectral Clustering Algorithm Within A	Cloud Computing
	TCMAPY1282	Multi-User Setting	
		This project develops a privacy-preserving spectral clustering approach for cloud	
		environments using CKKS homomorphic encryption, allowing encrypted data	
		uploads and accurate results without direct interaction, ensuring security and	
		efficiency.	
60.	TCMAPY1244	Comprehensive Review and Analysis of Cryptography Techniques in Cloud	Cloud Computing
		Computing	
		This project evaluates various cryptography methods-DNA, elliptic curve,	
		homomorphic, hybrid, lightweight, and novel-within cloud computing,	
		analyzing their methodologies and applications to recommend enhanced data	
		security solutions for cloud and IoT scenarios.	

	Project Id	Titles	Domain
61.	TCMAPY1311	Concise and Efficient Multi-Identity Fully Homomorphic Encryption	Cloud Computing
		Scheme	
		Our research develops a Multi-Identity Based Fully Homomorphic Encryption	
		(MIBFHE) system, integrating MKFHE with Identity-Based Encryption (IBE) to	
		enhance efficiency, security, and scalability for encrypted data computations,	
		reducing computational overhead and simplifying key management.	
62.		Deduct: A Secure Deduplication Of Textual Data In Cloud Environments	Cloud Computing
	TCMAPY1252	The "DEDUCT" project develops a secure cloud data deduplication system using	
		AES encryption to enhance storage efficiency by 90-95%, protect data	
		confidentiality, and define roles for secure file management and audits.	
63.		Dynamic Searchable Symmetric Encryption With Strong Security And Robustness	Cloud Computing
	TCMAPY1242		
		This project develops and evaluates SR-DSSE a and SR-DSSE b Dynamic	
		Searchable Symmetric Encryption schemes to enhance keyword search robustness	
		and security in encrypted cloud data, ensuring correctness and confidentiality in	
		healthcare contexts.	
64.		Expressive Public-Key Encryption With Keyword Search: Generic	Cloud Computing
	TCMAPY1281	Construction From KP-ABE and an Efficient Scheme Over Prime-Order	
		Groups	
		This paper critically assesses the security of expressive public-key encryption	
		with keyword search (PEKS) schemes, revealing a keyword guessing attack	
		vulnerability, and aims to improve resilience in cloud data privacy encryption	
		schemes.	
65.	TCMAAN1155	Improving Digital Forensic Security: A Secure Storage Model With	Cloud Computing
		Authentication and Optimal Key Generation Based Encryption	
		This paper develops DFA-AOKGE, a secure digital forensic architecture for IaaS,	
		using decentralized storage, multikey homomorphic encryption, and advanced key	
		generation to enhance evidence protection and integrity during investigations.	

	Project Id	Titles	Domain
66.		PEEV: Parse Encrypt Execute Verify—A Verifiable Fhe Framework	Cloud Computing
		The PEEV framework enhances cloud data confidentiality by enabling secure, remote computation on encrypted data using homomorphic encryption and zero- knowledge proofs, simplifying program writing, verification, and protecting against dishonest providers.	
67.		Privacy-Preserving and Trusted Keyword Search for Multi-Tenancy Cloud This study designs and implements a privacy-preserving, verifiable, and accountable keyword searchable encryption (VAKSE) scheme for multi-tenant clouds, ensuring secure keyword searches, data privacy, and efficient parallel processing.	Cloud Computing

The #1 Academic Projects Company Google reviews for Takeoff Projects

The most Creative Company for the B.Tech and M.Tech Projects, PhD Guidance & International Assignments

Surekha 5.0 * * * * *

Shahed

5 star to the company for its outstanding support, new technology & support

4.5 ★ ★ ★ ★ ★ Very nice project support, the explanation with the kit were very useful and easy to understand...

Madhu Sudan Reddy 5.0 * * * * *

You guys always come up with exciting new technologies... impressive!!! Keep it up...

Our Customer Base

+91 90303 33433 | 0877-2261612

www.takeoffprojects.com | info@takeoffprojects.com 🛛 🗗 🖿 🦉 💌 /TakeoffEduGroup