

ACADEMIC LIVE PROJECTS 2024-25 takeoff_{edu}®

0

P

COMPUTER SCIENCE

G

R

NASSCOM

Android PHP

- \checkmark Java & more

+91 9030 333 433, +91 8776 681 444

Project Code	Project Name	Objective
TCMAPY1296	A Semi-Supervised Learning Approach to Quality-	This project aims to create a semi-supervised learning
10.000 112/0	Based Web Service Classification (Python/Machine	framework for classifying web services based on quality. It
	Learning)	utilizes both labeled and unlabeled data: labeled data guides
	Learning)	
		classification, while unlabeled data improves generalization
		across diverse data distributions. The goal is to automate and
		enhance the evaluation of web service quality attributes
		effectively.
TCMAPY1370	Steel Surface Defect Detection	The primary objective of this project is to develop an
	(Python/Machine Learning)	automated steel surface defect detection system that
		accurately identifies six distinct types of defects using the
		YOLOv8 model. Specific objectives include enhancing
		defect detection speed and precision to facilitate real-time
		applications, reducing the dependency on manual inspection
		to improve operational efficiency, and minimizing human
		error in quality control processes
TCMAPY1397	Intrusion Detection System for Smart Vehicles Using	This project aims to develop a robust Intrusion Detection
	Machine Learning Algorithms	System (IDS) for smart vehicles using machine learning
	(Python/Machine Learning)	models to detect and mitigate cyber threats in vehicular
		networks. By leveraging the CAN-intrusion-dataset, it will
		classify attacks like DDoS, Fuzzy, and Impersonation,
		ensuring real-time, accurate threat detection and enhanced
		security.
TCMAPY1404	Smart system electricity power companies	The primary objective of this project is to design and develop
	(Python/Machine Learning)	a smart system for electricity power companies that enhances
		the efficiency, reliability, and sustainability of electricity
		distribution networks.
TCMAPY1405	A Connectivity-Aware Graph Neural Network for	The primary objective of this project is to develop a real-time
	Real-Time	drowsiness detection system that accurately identifies signs
	(Python/Machine Learning)	of driver fatigue using advanced machine learning
		techniques.
TCMAPY1372	X-AI enabled hybrid approach for detection of cyber	The primary objective of this research is to develop an X-AI
	terrorism	enabled hybrid approach that enhances the detection and
	(Python/Machine Learning)	prevention of cyber terrorism activities.

(Page. 2)

Website: www.takeoffprojects.com

TCMAPY1373	A Predictive Discrete Event Simulation For Predicting Operation Times In Container Terminal (Python/Machine Learning)	The primary objective of this study is to develop and evaluate a predictive discrete event simulation model for forecasting operation times in container terminals.
TCMAPY1387	Sentiment Analysis for YouTube Comment using AI (Python/Machine Learning)	Comments Sentiment Analysis: Extracts and classifies sentiments (positive, negative, or neutral) from comments retrieved via the YouTube Data API. Video Transcript Sentiment Analysis: Extracts video transcripts using the YouTube Transcript API and determines the sentiment of individual words or phrases.
TCMAPY1388	A Semi-Supervised Learning Approach To Quality- Based Web Service Classification (Python/Machine Learning)	The objective of this project is to develop an intelligent system that classifies web services into quality categories (Bronze, Silver, Gold, Platinum) using machine learning algorithms and Explainable AI (LIME). The system also recommends relevant services based on key performance metrics, aiming to improve service selection and decision- making accuracy
TCMAPY1375	Adaptive Monitoring For Early Stage Ransomware Detection Via Behaviour And Network Traffic Analysis (Python/Machine Learning)	The primary objective of this project is to develop an adaptive monitoring framework capable of detecting ransomware in its early stages through a combination of behavioral and network traffic analysis.
ТСМАРҮ1379	Meditaion Toxicity Forcasting Using Deep Learning (Python/Machine Learning)	This project aims to develop a deep learning-based model for predicting opioid prescription toxicity by analyzing a dataset of 25,000 records with 256 features. Using techniques like RNN, Random Forest, XGBoost, and Voting Classifiers, the goal is to identify high-risk prescribers and uncover patterns linking specific medications (e.g., Acetaminophen, Gabapentin, Levothyroxine) to increased toxicity, ultimately improving prescription safety and mitigating risks.
TCMAPY1384	Carbon Emission Prediction Through the Harmonization of Extreme Learning Machine and INFO Algorithm. (Python/Machine Learning)	Develop a predictive model for vehicle carbon emissions using ML techniques, enhancing accuracy through feature engineering and advanced algorithms.
TCMAPY1235	A Novel Web Framework for Cervical Cancer Detection System A Machine Learning Breakthrough (Python/Machine Learning)	This research introduces a novel web framework for cervical cancer detection using advanced machine learning techniques. It integrates AdaBoost, XGBoost, stacking classifier, and logistic regression models to improve diagnostic accuracy. The objective is to enhance early

(Page. 3)

detection and intervention processes, aiming to improve patient outcomes in cervical cancer management.

TCMAPY1271	Active Machine Learning For Heterogeneity Activity Recognition Through Smartwatch Sensors (Python/Machine Learning)	This project aims to create an efficient activity recognition system using smartwatch sensors. It leverages active machine learning to classify activities like walking, running, biking, and standing based on accelerometer and gyroscope data. By reducing labeled data needs through active learning, it aims to lower labeling costs while continuously refining model performance
TCMAPY1224	An Ensemble Deep Learning Model for Vehicular Engine Health Prediction (Python/Deep Learning)	This project aims to develop an ensemble deep learning model combining Random Forest and KNN algorithms for predictive maintenance of vehicular engines. By leveraging Real-time sensor data and historical records, it seeks to enhance accuracy in identifying early signs of engine degradation, thus improving reliability and optimizing operational efficiency in automotive engineering.
ТСМАРҮ1227	An Advanced Approach For Detecting Behavior- Based Intranet Attacks By Machine Learning (Python/Machine Learning)	The project aims to develop a sophisticated system using machine learning to identify and mitigate intranet attacks. By analyzing behavioral patterns and network data, it seeks to detect unauthorized access, data exfiltration, and malware infections. The goal is to enhance intranet security through real-time detection and response capabilities, safeguarding critical network assets effectively.
TCMAPY1238	Classifying Tor Traffic Encrypted Payload Using Machine Learning (Python/Machine Learning)	This study introduces a robust ML framework to classify encrypted Tor traffic payloads for cybersecurity enhancement. Using diverse features like Source Port, Destination Port, and IAT, Decision Tree, Logistic Regression, and XGBoost models are evaluated for accurately predicting traffic nature ('label'). It aims to optimize real-time encrypted traffic analysis for secure network environments.
TCMAPY1303	Explainable Data Driven Digital Twins For Predicting Battery States In Electric Vehicles (Python/Machine Learning)	This project aims to develop an advanced predictive model for electric vehicle battery states using Explainable Data- Driven Digital Twins. It integrates diverse machine learning algorithms (DNN, LSTM, CNN, SVR, SVM, FNN, RBF, RF, XGBoost) to accurately forecast SOC and SOH. Emphasis is placed on enhancing model transparency to optimize EV performance and support sustainable automotive technologies.

(Page. 4)

ТСМАРҮ1326	Hybrid Machine Learning Model For Efficient Botnet Attack Detection In IOT Environment (Python/Machine Learning)	Developing a hybrid ML model for efficient botnet attack detection in IoT environments. Integrates diverse ML techniques to enhance detection accuracy, leveraging IoT- specific data characteristics. Aimed at improving cybersecurity by identifying and mitigating botnet threats effectively in IoT networks.
TCMAPY1344	Machine Learning Based Diagnostic Paradigm in Viral and Non-Viral Hepatocellular Carcinoma (Python/Machine Learning)	The project aims to develop a machine learning-based diagnostic tool to accurately classify hepatocellular carcinoma into viral and non-viral types, enhancing diagnostic accuracy and supporting personalized treatment strategies.
TCMAPY1304	Machine Learning Algorithms for Forecasting and Categorizing Euro-to-Dollar Exchange Rates (Python/Machine Learning)	This project aims to enhance Euro-to-Dollar exchange rate forecasting by applying machine learning techniques, including neural networks and ensemble methods, to analyze historical data, improve prediction accuracy, and support informed financial decision-making.
ТСМАРҮ1237	Open-Set Recognition in Unknown DDoS Attacks Detection With Reciprocal Points Learning (Python/Machine Learning)	This study introduces Reciprocal Points Learning for Open- Set Recognition in DDoS attack detection, using Passive Aggressive, Random Forest, and Decision Tree algorithms to enhance detection accuracy and robustness against evolving threats.
ТСМАРҮ1299	PDF Malware Detection: Toward Machine Learning Modeling With Explainability Analysis (Python/Machine Learning)	This project develops a machine learning system to detect malware in PDF files, evaluating algorithms like Random Forest, SVM, AdaBoost, and DNN, aiming for high accuracy and interpretability to enhance cybersecurity.
TCMAPY1322	Predicting Hospital Stay Length Using Explainable Machine Learning (Python/Machine Learning)	The objective of this study is to develop and evaluate predictive models for hospital stay length using machine learning algorithms, including Logistic Regression, MLP, Random Forest, Gradient Boosting, and XGBoost. Additionally, the study aims to utilize explainability tools to interpret model predictions and identify the key determinants of hospital stay durations.
ТСМАРҮ1236	Sensor Fusion And Machine Learning For Seated Movement Detection With Trunk Orthosis (Python/Machine Learning)	This study aims to enhance seated movement detection using trunk orthoses by comparing Decision Trees, Random Forests, and Stacking Classifiers with KNN, integrating IMU and EMG sensor data for improved accuracy and reliability.

	GRU	UP
TCMAPY1324	Transparency and Privacy The Role of Explainable	This project advances financial fraud detection by
	AI and Federated Learning in Financial Fraud	integrating Explainable AI and Federated Learning,
	Detection	enhancing transparency and privacy. It compares traditional
		algorithms with newer methods to develop a robust,
	(Python/Machine Learning)	interpretable, and confidential system.
TCMAPY1327	A Dynamic Selection Hybrid Model for Advancing	This study aims to develop a Dynamic Selection Hybrid
	Thyroid Care With BOOST Balancing Method	Model for thyroid disorder diagnosis, integrating Decision
		Trees, SVM, KNN, Random Forest, AdaBoost, and Gradient
		Boosting within an Adaptive Ensemble Framework to
	(Python/Machine Learning)	enhance diagnostic accuracy and adaptability.
TCMAPY1292	A Framework for LLM-Assisted Smart Policing	This research aims to develop a Smart Policing System
	System	framework using GPT-4 and XLNet to enhance predictive
		accuracy, real-time crime analysis, address ethical concerns
	(Python/Machine Learning)	optimize resources, and adapt to modern policing challenges
TCMAPY1230	An Improved Concatenation of Deep Learning	The objective is to develop an enhanced ischemic stroke
	Models for Predicting and Interpreting Ischemic	predictive model by integrating deep learning with
	Stroke	traditional classifiers, improving accuracy, interpretability
	(Python/Deep Learning)	and validating the effectiveness of this unified approach for
		stroke prediction.
		1
TCMAPY1321	Applying Machine Learning Algorithms for the	The project aims to develop a web-based machine learning
10001111021	Classification of Sleep Disorders	system for classifying insomnia and sleep apnea using
	(Python/Machine Learning)	Stacking and Voting Classifiers, enhancing predictive
	(i yuon vuonne Leannig)	accuracy and automating diagnosis with the Sleep Health
		dataset.
TCMAPY1222	Exploring Deep Learning and Machine Learning	This project aims to develop a diagnostic model using
1 CIVIAI 1 1222	Approaches for Brain Hemorrhage Detection	ResNet and MobileNet to classify neuroimages into norma
	(Python/Deep Learning)	or stroke categories, enhancing accuracy and speed for earl
		detection and improved patient outcomes.
TCMAPY1302	Multi-Class Adaptive Active Learning for Predicting	This study aims to enhance student anxiety prediction
	Student Anxiety	accuracy using Decision Tree, Stacking Classifier, KNN
	(Python/Machine Learning)	Logistic Regression, XGBoost, Naive Bayes, and Randon
		Forest, with Multi-Class Adaptive Active Learning for

(Page. 6)

		GR				
TCMAPY1290	Predicting Energy De Exploring Temporal Variations and Impac (Python/Machine Lea	and Weather-Relate ts arning)	-	demand b enhancing planning, a managing f	y analy energy nd show fluctuati	-
TCMAPY1290	Product Helpfulne Transformer Based Probability Features (Python/Machine Lea	BERT Embedding		embedding classificatio	s for pr on accur g the L	o integrate LSTM networks with BERT roduct helpfulness detection, improving racy, providing confidence insights, and STM, BERT model's superiority over s.
TCMAPY1016	Identification Of H Convolutional Neura (Python/Deep Learni	l Network	cy Using	detection (MobileNet	system t, ResNe	to develop an advanced counterfeit for Indian currency using CNNs at), hybrid models with SVM and Random accuracy and security against fraud.
TCMAPY1401	Interactive Web Appl (Python/Deep Learni		ell Being	mental wel and emotic learning,	l-being onal sup and a lations,	our project is to enhance physical and by providing personalized yoga practice oport. Using computer vision, machine a chatbot, it tailors yoga pose and delivers supportive interactions based
TCMAPY1409	Smart Surveillance S (Python/Deep Learni		e Learning	and GRU	to c	real-time surveillance system using CNN lassify activities: Normal, Violence, acing security monitoring.
TCMAPY1410	Seamless Textual Ver (Python/Deep Learni		rning	BERT, and	I OPUS	gual translation system using MarianMT, MT, supporting Indian languages with adaptive learning.
TCMAPY1411	Detecting Human Lit (Python/Deep Learni	-		YOLOv8/Y	OLOv9	e detection system using) to identify humans, fire, smoke, ith instant alerts.
TCMAPY1412	Real-Time Vehicle Images (Python/Deep Learni		AV Aerial		ng BiFP	e vehicle detection model for UAV N, Soft-NMS, and enhanced prediction aracy.
TCMAPY1368	Text Summarization (Python/Deep Learni	ng)		BART—on generate co	the C oncise,	eep learning models—LSTM, Llama, and NN/DailyMail dataset. The goal is to readable summaries that maintain key improve accessibility across different

(Page. 7)

Website: www.takeoffprojects.com

TCMAPY1374	Predicting the stages of dementia using the OASIS dataset (Python/Deep Learning)	The primary objective of this study is to explore the potential of the OASIS dataset for predicting the stages of dementia using machine learning techniques.
TCMAPY1381	Deep-IDS A real time intrusion detector for iot nodes using deep learning (Python/Deep Learning)	The primary objective of this project is to develop Deep-IDS, a real-time intrusion detection system for Internet of Things (IoT) nodes, utilizing advanced deep learning techniques to enhance network security.
TCMAPY1285	Prediction Of Cardiovascular Diseases With Retinal Images Using Deep Learning (Python/Deep Learning)	The project develops a deep learning model using CNNs and MobileNet to predict cardiovascular diseases from retinal images, offering an accurate, efficient tool for early detection and improving patient outcomes.
TCMAPY1291	Tomato quality classification (Python/Deep Learning)	The "Tomato Quality Classification" project uses CNNs and MobileNet to classify tomatoes as healthy or rejected, enhancing quality control and operational efficiency in agriculture through automated, accurate classification.
TCMAPY1391	Optimized Brain Tumor Detection: A Dual-Module Approach for MRI Image Enhancement and Tumor Classification (Python/Deep Learning)	Develop a deep learning framework for brain tumor detection and segmentation in MRI images using MobileNet and DenseNet architectures.
TCMAPY1288	Novel Transfer Learning Based Deep Features for Diagnosis of Down syndrome in Children Using Facial Images (Python/Deep Learning)	The study develops a non-invasive diagnostic tool for early Down syndrome detection using facial images, integrating VNL-Net with MobileNet + SVM, enhancing accuracy and efficiency for mobile and edge devices.
TCMAPY1357	Fish Target Detection Using YOLOv9 and faster RCNN (Python/Deep Learning)	This project aims to develop a highly accurate and efficient system for underwater fish detection using YOLOv9 and Faster R-CNN, focusing on real-time processing and challenging conditions. By comparing these models' performance, the project seeks to contribute to marine biology and conservation efforts through improved monitoring of aquatic life.
TCMAPY1359	Enhanced Lumbar Disease Classification Through Hybrid Deep Learning Methods	This project develops an automated lumbar disease classification system using advanced models like MobileNet, DenseNet, CNN-SVM, and an involution-based VGG, aiming for real-time, accurate, and efficient healthcare diagnosis. Is this conversation helpful so far?

(Page. 8)

		U	N	0			
TCMAPY1288	Predicting Energy Exploring Tempo Variations And In (Python/Machine	oral And Wea	-	-	algorithms	to accur	is project is to leverage machine learning rately predict energy demand by analyzing her-related patterns.
TCMAPY1298	Gynecological D GDDES Based or Natural Language (Python/Machine	n Machine Le Processing	1	•	Diagnosis advanced algorithms accurately disorders,	Expert S diagnost and N identify specific	ective of the Gynecological Disease System (GDDES) project is to develop an tic tool that leverages machine learning latural Language Processing (NLP) to y and diagnose common gynecological ally Urinary Tract Infection (UTI) and Syndrome (PCOS).
TCMAPY1300	Parkinson's Disea (Python/Machine				Random I Parkinson's	Forests s Disea	earning model using CNNs, SVMs, and to analyze speech features for early ase detection, improving diagnostic g clinical decision-making.
TCMAPY1265	5G Coverage Pre Feature Paramete (Python/Machine	rs and Predict			algorithms Benchmark	to pred k models	arative analysis of machine learning lict 5G coverage using RF Signal Data. s like Logistic Regression, KNN, SVM, fy the most accurate, efficient model.
TCMAPY1263	Innovations in S Learning-Based images (Python/Machine	Diagnostic M			ResNet and enhancing	l Mobile stroke	to develop a diagnostic model using Net architectures to classify neuroimages, diagnosis accuracy and speed for early ly intervention.
TCMAPY1069	Rumor source ide (Python/Machine		m social net	work	rumors wi machine le	thin soc earning aims to	s a novel method for tracing the origins of cial networks. By combining advanced techniques with network analysis, the enhance the accuracy of identifying the rmation.
TCMAPY1302	Multi-Class Adap Student Anxiety (Python/Machine		earning for F	Predicting	adaptive ad	ctive lea recogni	cting student anxiety using a multi-class rrning framework was chosen due to the ition of mental health's critical role in s and overall well-being.
TCMAPY1303	Explainable Data Battery States in l (Python/Machine	Electric Vehic		Predicting	explainable predicts ke	e data-d y battery	ective of this project is to develop an riven digital twin model that accurately y states, specifically state of charge (SOC) (SOH), in electric vehicles (EVs).

(Page. 9)

TCMAPY1304	Machine Learning Algorithms for Forecasting and	The primary objective of this project is to evaluate the
	Categorizing Euro-to-Dollar Exchange Rates	performance of various machine learning algorithms,
	(Python/Machine Learning)	including AdaBoost, Gradient Boosting, Bagging, XGBoost,
		and Decision Tree Classifier, in forecasting and categorizing
		Euro-to-Dollar exchange rates.
TCMAPY1305	Leveraging Social Network Analysis for Influencer	Integrate Social Network Analysis with machine learning to
	Identification A Data Perspective	enhance influencer identification, using K-means clustering
	(Python/Machine Learning)	for user segmentation, evaluating network features, and
		analyzing patterns to refine marketing strategies and improve
		accuracy.
TCMAPY1306	Machine Learning for fuel Consumption Prediction	Develop a machine learning system to predict fuel
	(Python/Machine Learning)	consumption and classify driving profiles (Sporty, Eco,
		Calm, Normal, Aggressive) using ECU data, comparing
		algorithms to optimize performance and fuel efficiency.
TCM & DX/1 207	Dediction Condit Cond Frend Detection Heine	The universe chieven of this study is to subsure the
TCMAPY1307	Predicting Credit Card Fraud Detection Using	The primary objective of this study is to enhance the
	Machine Learning	accuracy and efficiency of credit card fraud detection
	(Python/Machine Learning)	systems by leveraging advanced machine learning
		algorithms. Credit card fraud remains a critical challenge for
		financial institutions due to the increasing sophistication of
		fraudulent activities. Traditional fraud detection methods
		often fall short in addressing these evolving threats,
TCMAPY1308	Enhancing Medicare Fraud Detection Through	To Develop a classification system for Medicare claims into
	Machine Learning Addressing Class Imbalance With	Fraud and Non-Fraud categories by addressing class
	SMOTE-ENN	imbalance using the Synthetic Minority Over-sampling
	(Python/Machine Learning)	Technique (SMOTE) combined with Edited Neares
		Neighbors (ENN), to enhance the detection accuracy of
		fraudulent claims within the dataset
ТСМАРҮ1343	Machine Learning Based Assessment of Mental	The primary objective of this project is to develop a machine
	Stress using Wearable Sensor Data	learning-based model that can assess and classify mental
	(Python/Machine Learning)	stress levels using data from wearable sensors
TCB.4. DX/10.4.4	Making Langing Decol D' (' D '')	The minute chieves of this is the set of the set
ТСМАРҮ1344	Machine Learning Based Diagnostic Paradigm in	The primary objective of this project is to develop a robust
	Viral and Non-Viral Hepatocellular Carcinoma	machine learning-based diagnostic tool to accurately classify
	(Python/Machine Learning)	hepatocellular carcinoma (HCC) into viral and non-vira
		categories.

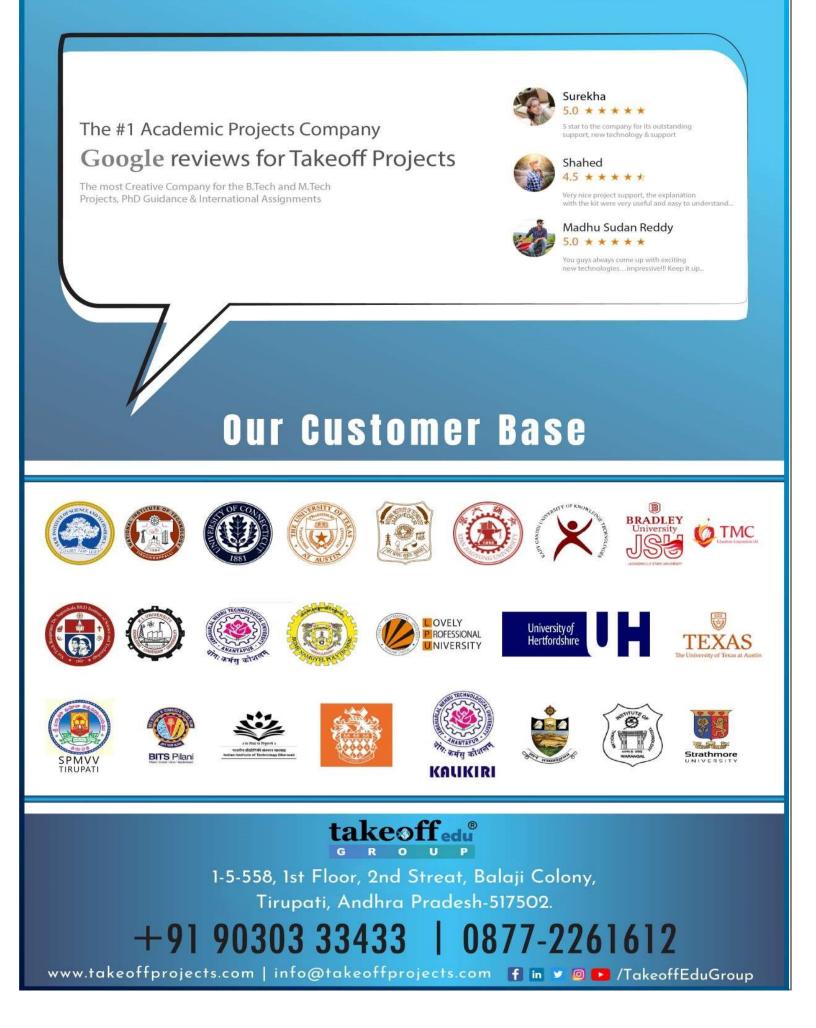
(Page. 10)

TCMAPY1345	Upi Fraud Detection Using Machine Learning	The primary objective of this project is to develop an
	(Python/Machine Learning)	effective fraud detection system for Unified Payments
		Interface (UPI) transactions by analyzing critical transaction
		details such as the bank book name, transaction ID, and
		transaction amount.
TCMAPY1346	smartsentry cyber threat intelligence in iiot	The objective of the SmartSentry project is to develop a
	(Python/Machine Learning)	robust Cyber Threat Intelligence (CTI) framework
		specifically designed for Industrial Internet of Things (IIoT)
		environments. The framework aims to enhance the security
		and resilience of critical infrastructure by leveraging
		advanced machine learning and deep learning techniques
TCMAPY1347	Machine Learning Approaches for Accurate Rainf	
	Prediction and preparedness	compare multiple machine learning algorithms for their
	(Python/Machine Learning)	effectiveness in predicting rainfall patterns based on
		historical weather data. By utilizing a dataset comprising
		diverse climatic features-such as temperature, humidity,
		wind speed, and atmospheric pressure-the project aims to
		identify the algorithms that yield the highest accuracy in
		forecasting rainfall events.
TCMAPY1351	Time Series Analysis For Bitcoin Price Prediction	on This project performs a time series analysis to predict Bitcoin
	Using Prophet	prices, comparing RNN, LSTM, ARIMA, and Prophet
	(Python/Machine Learning)	models, aiming to improve prediction accuracy and support
		informed trading decisions in volatile markets.
TCMAPY1356	You Are What You Buy Personal Information	_
	Extraction From Anonymized Data	consumer purchasing behavior and personal attributes
	(Python/Machine Learning)	(education, marital status, income) using anonymized data
	(i ytion/machine Leanning)	and machine learning models like Gradient Boosting,
		Random Forest, SVM, and DNN. The goal is to predict
		individual characteristics based on purchasing patterns to
		inform targeted marketing and enhance personalized
		consumer experiences while ensuring data privacy.
TCMAPY1364	Deep Ensemble Learning With Pruning for DDe	The main idea of this project is to determine whether network
	Attack Detection in IoT Networks	traffic is indicative of a DDoS attack or normal activity based
	(Python/Machine Learning)	on an analysis of various network flow features.
TCMAPY1354	El nino La nina	To classify ENSO phases (El Niño, La Niña, Normal) using
	(Python/Machine Learning)	machine learning and forecast future ONI values with deep
		learning models, improving climate prediction and
		preparedness for global weather impacts.
TCMAPY1355	Novel Sentiment Majority Voting Classifier a	
	Transfer Learning-Based Feature Engineering 1	
	Sentiment Analysis of Deepfake Tweets	based feature engineering, specifically by leveraging a pre-
	Seminent r marysis of Deeplate Tweets	trained BERT model and Random Forest classifier.
		Additionally, the research aims to evaluate the model's
		performance through metrics such as Accuracy, Precision,

(Page. 11)

takeoffedu[®] _{G R O U P}

Recall, and F1-Score while identifying key features that


		influence classification.
ТСМАРУ1314	Decentralized Traceability And Direct Marketing Of Agriculture Supply Chains (python/cloud)	This project enhances aspect-based sentiment analysis by evaluating DeBERTa, PaLM, and GPT-3.5-Turbo models across review domains, aiming to improve accuracy, address domain specificity challenges, and guide future ABSA research and development.
TCMAPY1349	On the Security of Secure Keyword Search and Data Sharing Mechanism for Cloud Computing (python/cloud)	This project critically evaluates Ge et al.'s CPAB-KSDS scheme, identifying security vulnerabilities in IND-CKA reductions and developing an attack to demonstrate weaknesses, enhancing understanding of ABPRE encryption robustness.
TCMAPY1026	An Efficient Privacy-Preserving Public Auditing Protocol for Cloud-Based Medical Storage System (python/cloud)	Develop a privacy-preserving public auditing protocol for cloud-based medical storage in smart healthcare, supporting batch auditing and dynamic updates to reduce costs and improve efficiency for data management and auditing.
ТСМАРУ	Preventing 51% Attack by Using Consecutive Block Limits in Bitcoin (python/cloud)	Develop and validate a modified Proof of Work (PoW) algorithm with "Safe Mode Detection" to prevent 51% attacks and double-spending in Bitcoin, enhancing blockchain security and transaction integrity.
ТСМАРҮ1360	Stub Signature Based Efficient Public Data Auditing System Using Dynamic Procedures in Cloud Computing	This project develops a partial signature-based data auditing system for cloud storage, leveraging homomorphic encryption and hash functions to enhance privacy, accuracy, and support dynamic data operations with minimal computational overhead.
ТСМАРУ	A Lightweight Image Encryption Algorithm Based on Secure Key Generation (python/cloud)	This research develops an enhanced AES algorithm with innovative key generation, dynamic substitution boxes, and circular permutation, aiming to improve data security and efficiency, especially for IoT and edge-fog-cloud systems.
ТСМАРҮ1311	Concise and Efficient Multi-Identity Fully Homomorphic Encryption Scheme (python/cloud)	Our research develops a Multi-Identity Based Fully Homomorphic Encryption (MIBFHE) system, integrating MKFHE with Identity-Based Encryption (IBE) to enhance efficiency, security, and scalability for encrypted data computations, reducing computational overhead and simplifying key management.
TCMAPY1252	Deduct: A Secure Deduplication Of Textual Data In Cloud Environments (python/cloud)	The "DEDUCT" project develops a secure cloud data deduplication system using AES encryption to enhance storage efficiency by 90-95%, protect data confidentiality, and define roles for secure file management and audits.

(Page. 12)

Website: www.takeoffprojects.com

TCMAPY1242	Dynamic Searchable Symmetric Encryption With Strong Security And Robustness (python/cloud)	b Dynamic Searchable Symmetric Encryption schemes to enhance keyword search robustness and security in encrypted cloud data, ensuring correctness and confidentiality in healthcare contexts.
TCMAPY1281	Expressive Public-Key Encryption With Keyword Search: Generic Construction From KP-ABE and an Efficient Scheme Over Prime-Order Groups (python/cloud)	This paper critically assesses the security of expressive public-key encryption with keyword search (PEKS) schemes, revealing a keyword guessing attack vulnerability, and aims to improve resilience in cloud data privacy encryption schemes.
TCMAPY1281	Improving Digital Forensic Security: A Secure Storage Model With Authentication and Optimal Key Generation Based Encryption (python/cloud)	
TCMAPY1	PEEV: Parse Encrypt Execute Verify—A Verifiable Fhe Framework (python/cloud)	The PEEV framework enhances cloud data confidentiality by enabling secure, remote computation on encrypted data using homomorphic encryption and zero-knowledge proofs, simplifying program writing, verification, and protecting against dishonest providers.
TCMAPY1245	Privacy-Preserving and Trusted Keyword Search for Multi-Tenancy Cloud (python/cloud)	This study designs and implements a privacy-preserving, verifiable, and accountable keyword searchable encryption (VAKSE) scheme for multi-tenant clouds, ensuring secure keyword searches, data privacy, and efficient parallel processing.
TCMAAN1153	Multi-Keywords Searchable Attribute-Based Encryption With Verification and Attribute Revocation Over Cloud Data (python/cloud)	1 , , , , , , , , , , , , , , , , , , ,
TCMAAN1156	A Pairing Free Provable Public Key Dual Receiver Encryption Scheme (python/cloud)	Develop a Dual Receiver Encryption (DRE) scheme using decisional Diffie-Hellman for enhanced efficiency and public verifiability, offering strong security against chosen ciphertext attacks and reduced computational complexity.
TCMAAN1157	Revolutionizing Cloud Data Security with Elliptic Curve Cryptography. (python/cloud)	Enhance cloud data security by implementing Elliptic Curve Cryptography (ECC) to provide robust encryption with lower computational and energy requirements, improving efficiency and security in cloud-based systems.

(Page. 15)

Website: www.takeoffprojects.com