A PHP Error was encountered

Severity: Notice

Message: Trying to get property of non-object

Filename: models/General_model.php

Line Number: 92

Backtrace:

File: /home/takeoff99/public_html/application/models/General_model.php
Line: 92
Function: _error_handler

File: /home/takeoff99/public_html/application/controllers/Projects.php
Line: 193
Function: get_deptid_str

File: /home/takeoff99/public_html/index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to get property of non-object

Filename: models/Project_model.php

Line Number: 674

Backtrace:

File: /home/takeoff99/public_html/application/models/Project_model.php
Line: 674
Function: _error_handler

File: /home/takeoff99/public_html/application/controllers/Projects.php
Line: 201
Function: generate_breadcrumb

File: /home/takeoff99/public_html/index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to get property of non-object

Filename: models/Project_model.php

Line Number: 674

Backtrace:

File: /home/takeoff99/public_html/application/models/Project_model.php
Line: 674
Function: _error_handler

File: /home/takeoff99/public_html/application/controllers/Projects.php
Line: 201
Function: generate_breadcrumb

File: /home/takeoff99/public_html/index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to get property of non-object

Filename: models/Project_model.php

Line Number: 674

Backtrace:

File: /home/takeoff99/public_html/application/models/Project_model.php
Line: 674
Function: _error_handler

File: /home/takeoff99/public_html/application/controllers/Projects.php
Line: 201
Function: generate_breadcrumb

File: /home/takeoff99/public_html/index.php
Line: 315
Function: require_once

A PHP Error was encountered

Severity: Notice

Message: Trying to get property of non-object

Filename: models/Project_model.php

Line Number: 674

Backtrace:

File: /home/takeoff99/public_html/application/models/Project_model.php
Line: 674
Function: _error_handler

File: /home/takeoff99/public_html/application/controllers/Projects.php
Line: 201
Function: generate_breadcrumb

File: /home/takeoff99/public_html/index.php
Line: 315
Function: require_once

TAKEOFF - View Abstract
     Certificate Verification        Student Ambassador          Quick Pay        Request For Enquiry
Sell Your Project      Apply for franchise          
  • 0877-2261612       
  • +91-9030 333 433
  • +91-9966 062 884

A Unified Matrix-based Convolutional Neural Network For Fine-grained Image Classification Of Wheat Leaf Diseases

A UNIFIED MATRIX-BASED CONVOLUTIONAL NEURAL NETWORK FOR FINE-GRAINED IMAGE CLASSIFICATION OF WHEAT LEAF DISEASES

  • Project Code :
  • TMMAAI23
  • .

A PHP Error was encountered

Severity: Notice

Message: Trying to get property of non-object

Filename: projects/view_abstract.php

Line Number: 278

Backtrace:

File: /home/takeoff99/public_html/application/views/static/projects/view_abstract.php
Line: 278
Function: _error_handler

File: /home/takeoff99/public_html/application/controllers/Projects.php
Line: 202
Function: view

File: /home/takeoff99/public_html/index.php
Line: 315
Function: require_once

Download Project Document / Synopsis

A UNIFIED MATRIX-BASED CONVOLUTIONAL NEURAL NETWORK FOR FINE-GRAINED IMAGE CLASSIFICATION OF WHEAT LEAF DISEASES

Fine-grained image classification methods often suffer from the challenge that the subordinate categories within an entry-level category can only be distinguished by subtle differences. Crop disease classification is affected by various visual interferences, including uneven illumination, dew, and equipment jitter. It demands an effective algorithm to accurately discriminate one category from the others. Thus, the representational ability of algorithm needs to be strengthened to learn a robust domain-specific discrimination through an effective way. To address this challenge, a unified convolutional neural network (CNN) denoting the matrix-based convolutional neural network (M-bCNN) was proposed. Its hallmark is the convolutional kernel matrix, whose convolutional layers are arranged parallel in the form of a matrix, and integrated with Drop Connect, exponential linear unit, local response normalization, and so on to defeat over-_tting and vanishing gradient. With a tolerable addition of parameters, it can effectively increase the data streams, neurons, and link channels of the model compared with the commonly used plain networks. Therefore, it will create more non-linear mappings and will enhance the representational ability with a tolerable growth of parameters. The images of winter wheat leaf diseases were utilized as experimental samples for their strong similarities among sub-categories. A total of 16 652 images containing eight categories were collected from Shandong Province, China, and were augmented into 83 260 images. The M-bCNN delivered significant improvements and achieved an average validation accuracy of 96.5% and a testing accuracy of 90.1%; this outperformed Alex Net and VGG-16. The M-bCNN demonstrated accuracy gains with a convolutional kernel matrix in _ne-grained image classification.

innovative
innovative Request Video

Package Includes

  • 24/7 Support
  • Voice Conference
  • Video On Demand
  • Remote Connectivity
  • Customization
  • Live Chat Support

Features

  • Complete Source Code
  • Complete Documentation
  • Complete Presentation Slides
  • Flow Diagram
  • Database File
  • Screenshots
  • Execution Procedure
  • Readme File
  • Addons
  • Video Tutorials

Leave Your Comment!

Your email address will not be published. Required fields are marked *

Call us : (+91) 9030333433 / 08772261612
Mail us : takeoffstudentprojects@gmail.com
Mail us : info@takeoffprojects.com