Embedded Projects
MATLAB Projects
VLSI Projects
EEE Parojects
Java Projects
.Net Projects
NS2 Projects
Android Projects
PHP Projects
Python Projects
Ph.d Assistance
Paper Publishing
International Journals
UGC Approved Journals
Scopus Indexed Journals
SCI & SCIE Indexed Journals
Elsevier & Springer Journals

Contact : 9030333433, 08772261612, 9393939076
3rd & 4th Floor, AVR Buildings, Opp to SV Music College, Balaji Colony, Tirupati – 515702
Email: info@takeoffprojects.com | www.takeoffprojects.com
2018 – 2019 B.TECH POWER SYSTEMS IEEE TITLES

<table>
<thead>
<tr>
<th>S.NO</th>
<th>TITLE</th>
<th>DOMAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A General PLL Type Algorithm For Speed Sensor Less Control Of Electrical Drives</td>
<td>DRIVES</td>
</tr>
<tr>
<td>2.</td>
<td>Torque Ripple Reduction And Fast Torque Response Strategy For Predictive Torque Control Of Induction Motors</td>
<td>DRIVES</td>
</tr>
<tr>
<td>3.</td>
<td>A Low Cost Single-Phase To Three-Phase Power Converter For Low-Power Motor Drive Applications</td>
<td>DRIVES</td>
</tr>
<tr>
<td>4.</td>
<td>A New Adaptive SMO For Speed Estimation Of Sensor Less Induction Motor Drives At Zero And Very Low Frequencies</td>
<td>DRIVES</td>
</tr>
<tr>
<td>5.</td>
<td>A Power Decoupling Control Method For The Regenerative Cascaded-H-Bridge-Based Motor Drive</td>
<td>DRIVES</td>
</tr>
<tr>
<td>6.</td>
<td>An Improved Indirect Field Oriented Control Scheme For Linear Induction Motor Traction Drives</td>
<td>DRIVES</td>
</tr>
<tr>
<td>7.</td>
<td>Applications Of Boost Converter To Increase The Speed Range Of Dual Stator Winding Induction Generator In Wind Power Systems</td>
<td>DRIVES</td>
</tr>
<tr>
<td>8.</td>
<td>Carrier Based Power Balancing In Three-Level Open-End Drive For Electric Vehicles</td>
<td>DRIVES</td>
</tr>
<tr>
<td>9.</td>
<td>Carrier Based PWM Methods For CMV Elimination In Open-End Winding Induction Motor Drive</td>
<td>DRIVES</td>
</tr>
<tr>
<td>10.</td>
<td>High Voltage Gain Interleaved Boost Converter With Neural Network Based MPPT Controller For Fuel Cell Based Electric Vehicle Applications</td>
<td>DRIVES</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Location</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>11.</td>
<td>High-Frequency Current Injection-Based Online Fault Diagnosis For Power Converter In SRM Drives</td>
<td>DRIVES</td>
</tr>
<tr>
<td>12.</td>
<td>Inductor Current Feedback Active Damping Method For Reduced DC Link Capacitance IPMSM Drives</td>
<td>DRIVES</td>
</tr>
<tr>
<td>13.</td>
<td>Sensor Less PMSM Drive Based On Stator Feed Forward Voltage Estimation Improved With MRAS Multi- Parameter Estimation</td>
<td>DRIVES</td>
</tr>
<tr>
<td>14.</td>
<td>Power Perturbation Based MTPA With An Online Tuning Speed Controller For An IPMSM Drive System</td>
<td>DRIVES</td>
</tr>
<tr>
<td>15.</td>
<td>Power Smoothing Control For The PMSG WECS Based On The Kinetic Energy</td>
<td>DRIVES</td>
</tr>
<tr>
<td>16.</td>
<td>Primary Frequency Control Using Hierarchal Fuzzy Logic For A Wind Farm Based On SCIG Connected To Electrical Network</td>
<td>DRIVES</td>
</tr>
<tr>
<td>17.</td>
<td>Stability Analysis And Improvement Of V/Hz Controlled Adjustable Speed Drives Equipped With Small DC-Link Thin Film Capacitors</td>
<td>DRIVES</td>
</tr>
<tr>
<td>18.</td>
<td>Standalone Photovoltaic Water Pumping System Using Induction Motor Drive With Reduced Sensors</td>
<td>DRIVES</td>
</tr>
<tr>
<td>19.</td>
<td>An Improved Rotor Flux Space Vector Based MRAS For Field-Oriented Control Of Induction Motor Drives</td>
<td>DRIVES</td>
</tr>
<tr>
<td>20.</td>
<td>Regenerative Braking Of Electric Vehicle Using A Modified Direct Torque Control And Adaptive Control Theory</td>
<td>DRIVES</td>
</tr>
<tr>
<td>22.</td>
<td>A General Decentralized Control Scheme Medium/High Voltage Cascaded STATCOM</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------------</td>
</tr>
<tr>
<td>23.</td>
<td>A Multiple Improved Notch Filter Based Control For Single Stage PV System Tied To Weak Grid</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>25.</td>
<td>A Proposal For A Wind System Equipped With A Doubly Fed Induction Generator Using The Conservative Power Theory For Active Filtering Of Harmonics Currents</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>26.</td>
<td>Active And Reactive Power Control Of Single Phase Transformer Less Grid Connected Inverter For Distributed Generation System</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>27.</td>
<td>Alternative Breed Of Three-Phase Four-Wire Shunt Compensators Based On Cascaded Transformer With Single Dc-Link</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>28.</td>
<td>An Effective Voltage Controller For Quasi-Z-Source Inverter-Based STATCOM With Constant DC-Link Voltage</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>30.</td>
<td>Asymmetrical Reactive Power Capability Of Modular Multilevel Cascade Converter (MMCC) Based Statcoms For Offshore Wind Farm</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>31.</td>
<td>Cluster Voltage Regulation Strategy To Eliminate Negative Sequence Currents Under Unbalanced Grid For Star-Connected Cascaded H-Bridge STATCOM</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>32.</td>
<td>Design And Implementation Of Sensor Less Voltage Control Of Front-End Rectifier For Power Quality Improvement In Telecom System</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>33.</td>
<td>Distributed Voltage And Frequency Synchronization Control Scheme For Islanded Inverter-Based Microgrid</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>34.</td>
<td>Dual P-Q Theory Based Energy Optimized Dynamic Voltage Restorer For Power Quality Improvement In Distribution System</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>35.</td>
<td>Enhanced Instantaneous Power Theory Decomposition For Power Quality Smart Converter Applications</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>36.</td>
<td>Enhancement Of Solar Farm Connectivity With Smart PV Inverter PV-STATCOM</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>37.</td>
<td>Enhancing Power Quality In Microgrids With A New Online Control Strategy For DSTATCOM Using Reinforcement Learning Algorithm</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>38.</td>
<td>GI Based Control Scheme For Single Stage Grid Interfaced SECS For Power Quality Improvement</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>39.</td>
<td>Grid Synchronization Of A PV System With Power Quality Disturbances Using Unscented Kalman Filtering</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>40.</td>
<td>Grid-Connected Symmetrical Cascaded Multilevel Converter For Power Quality Improvement</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>41.</td>
<td>Harmonics And Reactive Current Detection Of A Grid Interfaced PV Generation In Distribution System</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>42.</td>
<td>Implementation Of Immune Feedback Control Algorithm For Distribution Static Compensator</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>43.</td>
<td>Implementation Of Recurrent Neurocontrol Algorithm For Two Stage Solar Energy Conversion System</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>44.</td>
<td>Implementation Of Solar Photovoltaic System With Universal Active Filtering Capability</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>45.</td>
<td>Improved Lyapunov Function Based Control Approach For Single-Stage Inverter Grid Interfacing Solar Photovoltaic System</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>46.</td>
<td>Model Reference Adaptive Control Of STATCOM For Grid Integration Of Wind Energy Systems</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>47.</td>
<td>Multi – Functional Hybrid Stricture Of SVC And Capacitive Grid Connected Inverter(SVC//CGCI) For Active Power Injection And Non – Active Power Compensation</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>48.</td>
<td>Multi-Objective Dynamic Voltage Restorer With Modified EPLL Control And Optimized PI Controller Gains</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>49.</td>
<td>Optimal Design And Control Implementation Of UPQC Based On Variable Phase Angle Control Method</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>50.</td>
<td>Performance Evaluation Of A MW-Class SMES-BES DVR System For Mitigation Of Voltage Quality Disturbances</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>51.</td>
<td>Performance Improvement Of Grid Integrated Solar PV System Using DNLMS Control Algorithm</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>52.</td>
<td>Power Quality Improvement And PV Power Injection By DSTATCOM With Variable DC Link Voltage Control From RSC-MLC</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>53.</td>
<td>Power Quality Improvement In Utility Interactive Based AC-DC Converter Using Harmonic Current Injection Technique</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>54.</td>
<td>Power Quality Improvement Using Vlms Based Adaptive Shunt Active Filter</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>55.</td>
<td>PV-STATCOM: A New Smart Inverter For Voltage Control In Distribution Systems</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>56.</td>
<td>Selective Harmonic Elimination Technique With Control Of Capacitive DC-Link Voltages In An Asymmetric Cascaded H-Bridge Inverter For STATCOM Application</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>57.</td>
<td>GI Based Control Scheme For Single Stage Grid Interfaced SECS For Power Quality Improvement</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>-------------------</td>
</tr>
<tr>
<td>58</td>
<td>Control And Energy Management Of A Large Scale Grid- Connected PV System For Power Quality Improvement</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>59</td>
<td>Improving Network Voltage Unbalance Levels By Controlling DFIG Wind Turbine Using A Dynamic Voltage Restorer</td>
<td>POWER QUALITY</td>
</tr>
<tr>
<td>60</td>
<td>A Multiple Improved Notch Filter Based Control For Single Stage PV System Tied To Weak Grid</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>61</td>
<td>A Novel Maximum Power Point Tracking Technique Based On Fuzzy Logic For Photovoltaic Systems</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>62</td>
<td>A Review On Active & Reactive Power Control Strategy For A Standalone Hybrid Renewable Energy System Based On Droop Control</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>63</td>
<td>An Improved Adaptive P&O Technique For Two Stage Grid Interfaced SPVECS</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>64</td>
<td>An Improved H5 Topology With Low Common- Mode Current For Transformer Less PV Grid- Connected Inverter</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>65</td>
<td>Analysis Of The Characteristics Of Solar Cell Array Based On MATLAB / Simulink In Solar Unmanned Aerial Vehicle</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>66</td>
<td>Analysis, Control And Design Of Hybrid Grid-Connected Inverter For Renewable Energy Generation With Power Quality Conditioning</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>67</td>
<td>ANFIS Based Add-On Controller For Unbalance Voltage Compensation In Low Voltage Microgrid</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>68</td>
<td>Bidirectional Partial Power Converter Interface For Energy Storage Systems To Provide Peak Shaving In Grid-Tied PV Plants</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>69.</td>
<td>Control, Implementation, And Analysis Of A Dual Two-Level Photovoltaic Inverter Based On Modified Proportional–Resonant Controller</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>70.</td>
<td>Decentralized Coordination Power Control For Islanding Microgrid Based On PV/BES-VSG</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>71.</td>
<td>Design And Control Of Micro-Grid Fed By Renewable Energy Generating Sources</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>72.</td>
<td>Discrete Noise-Eliminating Second Order Generalized Integrator Based Control Strategy Applied To Grid-Integrated Solar PV Synchronization Converter</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>73.</td>
<td>Dynamic Power Decoupling Strategy For Three-Phase PV Power Systems Under Unbalanced Grid Voltages</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>74.</td>
<td>Dynamic Power Management System Employing Single Stage Power Converter For Standalone Solar PV Applications</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>75.</td>
<td>Enhancement Of Solar Farm Connectivity With Smart PV Inverter PV-STATCOM</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>76.</td>
<td>Grid Synchronization Of A PV System With Power Quality Disturbances Using Unscented Kalman Filtering</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>77.</td>
<td>Harmonics And Reactive Current Detection Of A Grid Interfaced PV Generation In Distribution System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>78.</td>
<td>High Voltage Gain Interleaved Boost Converter With Neural Network Based MPPT Controller For Fuel Cell Based Electric Vehicle Applications</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>79.</td>
<td>Implementation Of Recurrent Neurocontrol Algorithm For Two Stage Solar Energy Conversion System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>80.</td>
<td>Implementation Of Solar Photovoltaic System With Universal Active Filtering Capability</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-----------------------------------</td>
</tr>
<tr>
<td>81.</td>
<td>Improved Lyapunov Function Based Control Approach For Single-Stage Inverter Grid Interfacing Solar Photovoltaic System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>82.</td>
<td>Investigation On The Performance Of PV-UPQC Under Distorted Current And Voltage Conditions</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>83.</td>
<td>Isolated Bidirectional Battery Converter Control For Standalone Solar Pw Applications</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>84.</td>
<td>Maximum Power Point Tracking For Photovoltaic Solar Pump Based On ANFIS Tuning Systems</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>85.</td>
<td>Modeling And Control Of Photovoltaic And Fuel Cell Based Alternative Power Systems</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>86.</td>
<td>Optimal Control Design Of A Voltage Controller For Stand-Alone And Grid-Connected PV Converter</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>87.</td>
<td>Performance Improvement Of Grid Integrated Solar PV System Using DNLMS Control Algorithm</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>88.</td>
<td>Power Quality Improvement And PV Power Injection By DSTATCOM With Variable DC Link Voltage Control From RSC-MLC</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>89.</td>
<td>PV-Battery Based Single Phase Micro Grid With Grid Synchronization And De-Synchronization Capabilities</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>90.</td>
<td>PV-STATCOM: A New Smart Inverter For Voltage Control In Distribution Systems</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>91.</td>
<td>A New Architecture Of INC-Fuzzy Hybrid Method For Tracking Maximum Power Point In PV Cells</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>92.</td>
<td>GI Based Control Scheme For Single Stage Grid Interfaced SECS For Power Quality Improvement</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>93.</td>
<td>Normal Harmonic Search Algorithm Based MPPT For Solar PV System And Integrated With Grid Using Reduced Sensor Approach And PNKLMS Algorithm</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>94.</td>
<td>Control And Energy Management Of A Large Scale Grid-Connected PV System For Power Quality Improvement</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>95.</td>
<td>Experimental Implementation Of An APC With Enhanced MPPT For Standalone Solar Photovoltaic Based Water Pumping Station</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>96.</td>
<td>Design And Performance Analysis Of Generalised Integrator-Based Controller For Grid Connected PV System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>97.</td>
<td>Implementation Of Improved Perturb & Observe MPPT Technique With Confined Search Space For Standalone Photovoltaic System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>98.</td>
<td>New RBFN Based MPPT Controller For Grid-Connected PEMFC System With High Step-Up Three-Phase IBC</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>99.</td>
<td>MPPT Enabled SPWM Based Bipolar VSI Design In Photovoltaic Applications</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>100.</td>
<td>A New Dual-Mode Maximum Power Point Tracking Algorithm Based On The Perturb And Observe Algorithm Used On Solar Energy System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>101.</td>
<td>Optimal Parameter Design Of Fractional Order Control Based INC-MPPT For PV System</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>102.</td>
<td>Grid Interfaced Solar Photovoltaic System Using ZA-LMS Based Control Algorithm</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>103.</td>
<td>A New Topology With The Repetitive Controller Of A Reduced Switch Seven Level Cascaded Inverter For A Solar PV-Battery Based Microgrid</td>
<td>SOLAR POWER GENERATION</td>
</tr>
<tr>
<td>104.</td>
<td>A Novel DVR-ESS-Embedded Wind-Energy Conversion System</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>105.</td>
<td>A Proposal For A Wind System Equipped With A Doubly Fed Induction Generator Using The Conservative Power Theory For Active Filtering Of Harmonics Currents</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>106.</td>
<td>A Review On Active & Reactive Power Control Strategy For A Standalone Hybrid Renewable Energy System Based On Droop Control</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>107.</td>
<td>ANFIS Based Add-On Controller For Unbalance Voltage Compensation In Low Voltage Micro Grid</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>108.</td>
<td>Applications Of Boost Converter To Increase The Speed Range Of Dual Stator Winding Induction Generator In Wind Power Systems</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>109.</td>
<td>Asymmetrical Reactive Power Capability Of Modular Multilevel Cascade Converter (MMCC) Based Statcoms For Offshore Wind Farm</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>110.</td>
<td>Design And Control Of Micro-Grid Fed By Renewable Energy Generating Sources</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>111.</td>
<td>Detailed Investigation And Performance Improvement Of The Dynamic Behavior Of Grid-Connected DFIG Based Wind Turbines Under LVRT Conditions</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>112.</td>
<td>Model Reference Adaptive Control Of STATCOM For Grid Integration Of Wind Energy Systems</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>113.</td>
<td>Primary Frequency Control Using Hierarchal Fuzzy Logic For A Wind Farm Based On SCIG Connected To Electrical Network</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>114.</td>
<td>Reconfigurable Control For Fault-Tolerant Of Parallel Converters In PMSG Wind Energy Conversion System</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>115.</td>
<td>Stability And Power Quality Enhancement Strategy For DFIG System</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Connected To Harmonic Grid With Parallel Compensation</td>
<td></td>
</tr>
<tr>
<td>116.</td>
<td>Synchronization And Reactive Current Support Of PMSG Based Wind</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Farm During Severe Grid Fault</td>
<td></td>
</tr>
<tr>
<td>117.</td>
<td>Low Voltage Ride Through Capability Improvement Methods For DFIG</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Based Wind Farm</td>
<td></td>
</tr>
<tr>
<td>118.</td>
<td>Fault Ride-Through Enhancement In DFIG With Control Of Stator Flux</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Using Minimised Series Voltage Compensator</td>
<td></td>
</tr>
<tr>
<td>119.</td>
<td>Enhancement Of DFIG Performance At High Wind Speed Using Fractional</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Order PI Controller In Pitch Compensation Loop</td>
<td></td>
</tr>
<tr>
<td>120.</td>
<td>Combined Control Method For Grid-Side Converter Of Doubly Fed</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Induction Generator Based Wind Energy Conversion Systems</td>
<td></td>
</tr>
<tr>
<td>121.</td>
<td>Improving Network Voltage Unbalance Levels By Controlling DFIG</td>
<td>WIND POWER GENERATION</td>
</tr>
<tr>
<td></td>
<td>Wind Turbine Using A Dynamic Voltage Restorer</td>
<td></td>
</tr>
<tr>
<td>122.</td>
<td>A Comprehensive Strategy For Power Quality Improvement Of Multi</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td></td>
<td>Inverter-Based Micro Grid With Mixed Loads</td>
<td></td>
</tr>
<tr>
<td>123.</td>
<td>A Reliable Micro-Grid With Seamless Transition Between Grid</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td></td>
<td>Connected And Islanded Mode For Residential Community With Enhanced</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Power Quality</td>
<td></td>
</tr>
<tr>
<td>124.</td>
<td>ANFIS Based Add-On Controller For Unbalance Voltage Compensation In</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td></td>
<td>Low Voltage Microgrid</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Section</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------</td>
</tr>
<tr>
<td>125</td>
<td>Coordination Of SMES, SFCL And Distributed Generation Units For Micro-Grid Stability Enhancement Via Wireless Communications</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>126</td>
<td>Decentralized Coordination Power Control For Islanding Microgrid Based On PV/BES-VSG</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>127</td>
<td>Decentralized Coordination Power Control For Islanding Microgrid Based On PV/BES-VSG</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>128</td>
<td>Decentralized Coordination Power Control For Islanding Microgrid Based On PV/BES-VSG</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>129</td>
<td>Fuzzy Secondary Controller Based Virtual Synchronous Generator Control Scheme For Interfacing Inverters Of Renewable Distributed Generation In Microgrids</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>130</td>
<td>Intelligent Power Sharing Of DC Isolated Microgrid Based On Fuzzy Sliding Mode Droop Control</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>131</td>
<td>PV-Battery Based Single Phase Microgrid With Grid Synchronization And De-Synchronization Capabilities</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>132</td>
<td>Switching Performance Optimization For A Hybrid AC/DC Microgrid Using An Improved VSG Control Strategy</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>133</td>
<td>An Improved Grid Current And DC Capacitor Voltage Balancing Method For Three-Terminal Hybrid AC/DC Microgrid</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>134</td>
<td>Distributed Virtual Inertia Control And Stability Analysis Of DC Microgrid</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>135</td>
<td>An Improved Power Control Strategy For Hybrid AC-DC Microgrids</td>
<td>MICROGRIDS</td>
</tr>
<tr>
<td>137.</td>
<td>ANFIS Based Add-On Controller For Unbalance Voltage Compensation In Low Voltage Microgrid</td>
<td>HYBRID SYSTEMS</td>
</tr>
<tr>
<td>138.</td>
<td>Design And Control Of Micro-Grid Fed By Renewable Energy Generating Sources</td>
<td>HYBRID SYSTEMS</td>
</tr>
<tr>
<td>139.</td>
<td>A New Topology With The Repetitive Controller Of A Reduced Switch Seven Level Cascaded Inverter For A Solar PV-Battery Based Microgrid</td>
<td>HYBRID SYSTEMS</td>
</tr>
</tbody>
</table>
2018 – 2019 B.TECH CONTROL SYSTEMS IEEE TITLES

<table>
<thead>
<tr>
<th>S.NO</th>
<th>TITLE</th>
<th>DOMAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>A Multiple Improved Notch Filter Based Control for Single Stage PV System Tied to Weak Grid</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>2</td>
<td>A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>3</td>
<td>An Improved Adaptive P&O Technique for Two Stage Grid Interfaced SPVECS</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>4</td>
<td>High Voltage Gain Interleaved Boost Converter with Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle Applications</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>5</td>
<td>Implementation of Recurrent Neurocontrol Algorithm for Two Stage Solar Energy Conversion System</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>6</td>
<td>Improved Lyapunov Function based Control Approach for Single-stage inverter Grid Interfacing Solar Photovoltaic System</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>7</td>
<td>Intelligent Power Sharing of DC Isolated Microgrid Based on Fuzzy Sliding Mode Droop Control</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>8</td>
<td>Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>9</td>
<td>Modeling and control of photovoltaic and fuel cell based alternative power systems</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>10</td>
<td>Performance Improvement of Grid Integrated Solar PV System using DNLMS Control Algorithm</td>
<td>CONTROL SYSTEMS</td>
</tr>
<tr>
<td>Title</td>
<td>Publisher</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>-----------------------------</td>
<td></td>
</tr>
<tr>
<td>Primary frequency control using hierarchal fuzzy logic for a wind farm based on SCIG connected to electrical network</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Control of fuzzy logic based PV-battery hybrid system for stand-alone DC – applications</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>PV system fuzzy logic MPPT method and PI control as a charge controller</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Optimal parameter design of fractional order control based INC-MPPT for PV system</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Backstepping based non-linear control for maximum power point tracking in photovoltaic system</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>A new architecture of INC-fuzzy hybrid method for tracking maximum power point in PV cells</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>GI based Control Scheme for Single Stage Grid Interfaced SECS for Power Quality Improvement</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Normal Harmonic Search Algorithm Based MPPT for Solar PV System and Integrated with Grid using Reduced Sensor Approach and PNKLMS Algorithm</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Design and performance analysis of generalized integrator-based controller for grid connected PV system</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Implementation of improved Perturb & Observe MPPT technique with confined search space for standalone photovoltaic system</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Optimal parameter design of fractional order control based INC-MPPT for PV system</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
<tr>
<td>Grid interfaced solar photovoltaic system using ZA-LMS based control algorithm</td>
<td>CONTROL SYSTEMS</td>
<td></td>
</tr>
</tbody>
</table>

2018 – 2019 B.TECH POWER ELECTRONICS IEEE TITLES
<table>
<thead>
<tr>
<th>S.NO</th>
<th>TITLE</th>
<th>DOMAIN</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.</td>
<td>A Fast Recovery Technique for Grid-Connected Converters After Short Dips Using a Hybrid Structure PLL</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>2.</td>
<td>A Hybrid UP-PWM Scheme for HERIC Inverter to Improve Power Quality and Efficiency</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>3.</td>
<td>A Transformer less Single-Phase Symmetrical Z-Source HERIC Inverter with Reduced Leakage Currents for PV Systems</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>4.</td>
<td>Advanced Voltage Support and Active Power Flow Control in Grid-Connected Converters Under Unbalanced Conditions</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>5.</td>
<td>An Effective Voltage Controller for Quasi-Z-Source Inverter-Based STATCOM With Constant DC-Link Voltage</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>6.</td>
<td>An Improved H5 Topology with Low Common-Mode Current for Transformer less PV Grid-Connected Inverter</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>8.</td>
<td>Ancillary services provided by photovoltaic inverters: Single and three phase control strategies</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>9.</td>
<td>applications of boost converter to increase the speed range of dual stator winding induction generator in wind power systems</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>11.</td>
<td>Carrier Based Power Balancing in Three-Level Open-End Drive for Electric Vehicles</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>12.</td>
<td>Decentralized Coordination Power Control for Islanding Microgrid Based on PV/BES-VSG</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>13.</td>
<td>Dual P-Q Theory based Energy Optimized Dynamic Voltage Restorer for Power Quality Improvement in Distribution System</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>14.</td>
<td>Dual-Transformer-Based DAB Converter With Wide ZVS Range for Wide Voltage Conversion Gain Application</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>15.</td>
<td>Dynamic Power Decoupling Strategy for Three-Phase PV Power Systems under Unbalanced Grid Voltages</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>16.</td>
<td>Highly reliable inverter topology with a novel soft computing technique to eliminate leakage current in grid-connected transformer less photovoltaic systems</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>17.</td>
<td>Isolated Bidirectional Battery Converter Control for Standalone Solar PV Applications</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>18.</td>
<td>Multi-functional hybrid stricture of SVC and capacitive grid connected inverter(SVC/CGCI) for active power injection and non-active power compensation</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>19.</td>
<td>Power Perturbation Based MTPA With an Online Tuning Speed Controller for an IPMSM Drive System</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>20.</td>
<td>PV-STATCOM: A New Smart Inverter for Voltage Control in Distribution Systems</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>21.</td>
<td>Small community electric energy micro – storage systems with Active functions</td>
<td>POWER CONVERTERS</td>
</tr>
</tbody>
</table>

Contact : 9030333433, 08772261612, 9393939076
3rd & 4th Floor, AVR Buildings, Opp to SV Music College, Balaji Colony, Tirupati – 515702
Email: info@takeoffprojects.com | www.takeoffprojects.com
<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Category</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>A Comprehensive Strategy for Power Quality Improvement of Multi-Inverter-Based Microgrid</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>23</td>
<td>Distributed voltage and frequency synchronization control scheme for islanded inverter-based microgrid</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>24</td>
<td>Fuzzy Secondary Controller Based Virtual Synchronous Generator Control Scheme for Interfacing Inverters of Renewable Distributed Generation in Microgrids</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>25</td>
<td>Dynamic Power Management System Employing Single Stage Power Converter for Standalone Solar PV Applications</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>26</td>
<td>A New Soft-Switching Configuration and Its Application in Transformer less Photovoltaic Grid-Connected Inverters</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>27</td>
<td>Advanced Control of Grid-connected Current Source Converter under Unbalanced Grid Voltage Conditions</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>28</td>
<td>Carrier based PWM methods for CMV elimination in open-end winding induction motor drive</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>29</td>
<td>Design and Implementation of Sensor less Voltage Control of Front-End Rectifier for Power Quality Improvement in Telecom System</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>30</td>
<td>Duty Compensated Reduced Harmonic Control for a Single-Phase H-Bridge PFC Converter</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>31</td>
<td>Inductor current feedback active damping method for reduced DC link capacitance IPMSM drives</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>32</td>
<td>Power Quality Improvement in Utility Interactive Based AC-DC Converter Using Harmonic Current Injection Technique</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------------------</td>
</tr>
<tr>
<td>33.</td>
<td>Switching Performance Optimization for a Hybrid AC/DC Microgrid using an Improved VSG Control Strategy</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>34.</td>
<td>An Improved Grid Current and DC Capacitor Voltage Balancing Method for Three-Terminal Hybrid AC/DC Microgrid</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>35.</td>
<td>An improved power control strategy for hybrid AC-DC microgrids</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>36.</td>
<td>Experimental Implementation of an APC with Enhanced MPPT for Standalone Solar Photovoltaic based Water Pumping Station</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>37.</td>
<td>Design and performance analysis of generalized integrator-based controller for grid connected PV system</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>38.</td>
<td>new RBFN based MPPT controller for grid-connected PEMFC system with high step-up three-phase IBC</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>39.</td>
<td>MPPT Enabled SPWM based bipolar VSI design in photovoltaic applications</td>
<td>POWER CONVERTERS</td>
</tr>
<tr>
<td>40.</td>
<td>applications of boost converter to increase the speed range of dual stator winding induction generator in wind power systems</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>41.</td>
<td>Dynamic Power Management System Employing Single Stage Power Converter for Standalone Solar PV Applications</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>42.</td>
<td>High Voltage Gain Interleaved Boost Converter with Neural Network Based MPPT Controller for Fuel Cell Based Electric Vehicle Applications</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>43.</td>
<td>Improved Power Quality Switched Inductor Cuk Converter for Battery Charging Application</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Category</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>----------------</td>
</tr>
<tr>
<td>44</td>
<td>Isolated Bidirectional Battery Converter Control for Standalone Solar PV Applications</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>45</td>
<td>Optimal Control Design of a Voltage Controller for Stand-Alone and Grid-Connected PV Converter</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>46</td>
<td>Smart community electric energy micro – storage systems with Active functions</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>47</td>
<td>A novel maximum power point tracking technique based on fuzzy logic for photovoltaic systems</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>48</td>
<td>An Improved Adaptive P&O Technique for Two Stage Grid Interfaced SPVECS</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>49</td>
<td>Implementation of Recurrent Neurocontrol Algorithm for Two Stage Solar Energy Conversion System</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>50</td>
<td>Maximum power point tracking for photovoltaic solar pump based on ANFIS tuning system</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>51</td>
<td>Modeling and control of photovoltaic and fuel cell based alternative power systems</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>52</td>
<td>Control of fuzzy logic based PV-battery hybrid system for stand-alone DC applications</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>53</td>
<td>PV system fuzzy logic MPPT method and PI control as a charge controller</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>54</td>
<td>Backstepping based non-linear control for maximum power point tracking in photovoltaic system</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>55</td>
<td>Optimal parameter design of fractional order control based INC-MPPT for PV system</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>56</td>
<td>A new architecture of INC-fuzzy hybrid method for tracking maximum power point in PV cells</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td></td>
<td>Title</td>
<td>Publication Area</td>
</tr>
<tr>
<td>---</td>
<td>--</td>
<td>---------------------------</td>
</tr>
<tr>
<td>57.</td>
<td>A new dual-mode maximum power point tracking algorithm based on the Perturb and Observe algorithm used on solar energy system</td>
<td>DC-DC CONVERTERS</td>
</tr>
<tr>
<td>58.</td>
<td>A Decentralized Multi-loop Scheme for Robust Control of a Power Flow Controller with Two Shunt Modular Multilevel Converters</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>59.</td>
<td>Alternative Breed of Three-Phase Four-Wire Shunt Compensators based on Cascaded Transformer with Single DC-link</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>60.</td>
<td>An Effective Voltage Controller for Quasi-Z-Source Inverter-Based STATCOM With Constant DC-Link Voltage</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>61.</td>
<td>An Overview of Modular Multilevel Converters in HVDC Transmission Systems with STATCOM Operation during Pole-to-Pole DC Short Circuits</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>62.</td>
<td>Cluster Voltage Regulation Strategy to Eliminate Negative Sequence Currents under Unbalanced Grid for Star-Connected Cascaded H-Bridge STATCOM</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>63.</td>
<td>Control, implementation, and analysis of a dual two-level photovoltaic inverter based on modified proportional–resonant controller</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>64.</td>
<td>Grid-Connected Symmetrical Cascaded Multilevel Converter for Power Quality Improvement</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>65.</td>
<td>Selective Harmonic Elimination Technique With Control of Capacitive DC-Link Voltages in an Asymmetric Cascaded H-Bridge Inverter for STATCOM Application</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>66.</td>
<td>Voltage Limit Control of Modular Multilevel Converter based Unified Power Flow Controller under Unbalanced Grid Conditions</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
<tr>
<td>67.</td>
<td>A new topology with the repetitive controller of a reduced switch seven level cascaded inverter for a solar PV-battery based microgrid</td>
<td>MULTILEVEL INVERTERS</td>
</tr>
</tbody>
</table>
PROJECT SUPPORTS FOR STUDENTS:

- Project Abstract
- Project IEEE Base Paper/Reference Paper
- Project Presentation in PPT Format
- Project Review Assistance for VIVA
- Project Diagrams
- Project Source Code
- Project Report
- Project Screen Shots
- Project Demo
- Project Explanation
- Plagiarism Documentation
- International Journal/Conference Publishing
- Project Acceptance Letter
- Project Completion Certificate

CONTACT DETAILS:

Landline: 0877-2261612 Mobile: (0)9030333433

ADDRESS:

3rd & 4th Floor AVR Complex, Balaji Colony, TIRUPATHI – 517502 Web: www.takeoffprojects.com
Email: takeoffstudentprojects@gmail.com
info@takeoffprojects.com

Contact: 9030333433, 08772261612, 9393939076
3rd & 4th Floor, AVR Buildings, Opp to SV Music College, Balaji Colony, Tirupati – 515702
Email: info@takeoffprojects.com | www.takeoffprojects.com